EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增材制造中滚筒铺粉工艺参数对尼龙粉体铺展性的影响研究

张江涛 谭援强 纪财源 肖湘武 姜胜强

张江涛, 谭援强, 纪财源, 肖湘武, 姜胜强. 增材制造中滚筒铺粉工艺参数对尼龙粉体铺展性的影响研究. 力学学报, 2021, 0(0): 1-11 doi: 10.6052/0459-1879-21-240
引用本文: 张江涛, 谭援强, 纪财源, 肖湘武, 姜胜强. 增材制造中滚筒铺粉工艺参数对尼龙粉体铺展性的影响研究. 力学学报, 2021, 0(0): 1-11 doi: 10.6052/0459-1879-21-240
Zhang Jiangtao, Tan Yuanqiang, Ji Caiyuan, Xiao Xiangwu, Jiang Shengqiang. Research on the effects of roller-spreading parameters for nylon powder spreadability in additive manufacturing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 0(0): 1-11 doi: 10.6052/0459-1879-21-240
Citation: Zhang Jiangtao, Tan Yuanqiang, Ji Caiyuan, Xiao Xiangwu, Jiang Shengqiang. Research on the effects of roller-spreading parameters for nylon powder spreadability in additive manufacturing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 0(0): 1-11 doi: 10.6052/0459-1879-21-240

增材制造中滚筒铺粉工艺参数对尼龙粉体铺展性的影响研究

doi: 10.6052/0459-1879-21-240
基金项目: 国家自然科学基金项目(11772135)和福建省引导性项目(2019H0018)资助
详细信息
    作者简介:

    谭援强, 教授, 主要研究方向: 制造工艺过程模拟及优化、离散元方法及应用、摩擦学及应用. E-mail: tanyq@hqu.edu.cn

  • 中图分类号: TB12

RESEARCH ON THE EFFECTS OF ROLLER-SPREADING PARAMETERS FOR NYLON POWDER SPREADABILITY IN ADDITIVE MANUFACTURING

  • 摘要: 铺粉工艺是基于粉床的增材制造(additive manufacturing, AM)技术中的关键工序之一. 滚筒铺粉工艺参数包括铺粉层厚H, 滚筒直径D, 滚筒的旋转速度ω和平移速度V, 对增材制造工艺中的粉体铺展性具有重要影响. 本文以尼龙粉体为研究对象, 采用离散元(discrete element method, DEM)模拟其滚筒铺展过程, 建立沉积分数、覆盖率和沉积速率三个铺展性指标. 采用中心复合设计(central composite design, CCD)生成30组仿真案例, 通过响应曲面法(response surface methodology, RSM)拟合了三个铺展性指标的回归模型. 采用方差分析证明了回归模型的准确性和预测的有效性, 并详细分析了工艺参数对粉体铺展性指标的影响规律. 结果表明: 铺粉层厚H是最大的影响因素, 平移速度V是次要的影响因素, 滚筒直径D和滚筒的旋转速度ω对粉体铺展性指标影响较小, HVDV为影响粉体铺展性指标的主要交互因素. 以三个铺展性指标为优化目标, 采用期望值法对滚筒铺粉工艺参数进行多目标优化, 获得了预测的最优铺粉工艺参数和粉体铺展性指标组合, 并通过实验验证了粉体铺展性指标的预测结果与实验结果吻合良好. 本文的研究结果可指导增材制造中滚筒铺粉工艺参数的优化.

     

  • 图  1  尼龙粉末的粒径分布

    Figure  1.  The particle size distribution of nylon powders

    图  2  尼龙粉末的微观形貌图

    Figure  2.  The micro topography of nylon powders

    图  3  滚筒铺粉过程的DEM模拟

    Figure  3.  DEM simulation of roller-spreading processes

    图  4  第一层粉末和第二层粉末分别被标记为蓝色和橙色

    Figure  4.  The first and the second powder layer are marked by blue and orange colors, respectively

    图  5  粉堆的质量随滚筒在X方向上位移的关系

    Figure  5.  The mass of the powder pile as a function of roller’s displacement in the X direction

    图  6  沉积阶段粉堆随时间的变化

    Figure  6.  Changes of the powder pile over time during the powder deposition stage

    图  7  HV相互作用对粉体铺展性指标的影响: (a)沉积分数的等高线图; (b)覆盖率的等高线图; (c)沉积速率的等高线图(D = 20 mm 和 ω = 150 r/min)

    Figure  7.  The interaction effect of HV on powder spreadability indicators: (a) Contour plot of deposition fraction; (b) contour plot of percent coverage; (c) contour plot of deposition rate (D = 20 mm and ω = 150 r/min)

    图  8  DV相互作用对粉体铺展性指标的影响: (a)沉积分数的等高线图; (b)沉积速率的等高线图(H = 150 μm 和 ω = 150 r/min)

    Figure  8.  The interaction effect of DV on powder spreadability indicators: (a) Contour plot of deposition fraction; (b) contour plot of deposition rate (H = 150 μm and ω = 150 r/min)

    图  9  用于测量沉积分数的实验包

    Figure  9.  Experimental packages for measuring deposition fraction

    图  10  铺粉实验平台

    Figure  10.  The powder spreadability device

    图  11  覆盖率的实验方法: (a)由照相机获得的粉层表面形态图像;(b)通过灰度处理和阈值分割获得的图像

    Figure  11.  The experimental method for percent coverage: (a) The surface morphology image of powder layer obtained by the camera; (b) the image obtained by gray-scale processing and threshold segmentation

    图  12  铺粉过程的粉末流动形态

    Figure  12.  The powder flow pattern during powder spreading

    表  1  仿真中的DEM参数

    Table  1.   DEM parameters in simulation

    ParameterValue
    powder density/(kg/m3)1000
    powder Young's modulus/MPa61
    powder Poisson’s ratio0.35
    static friction coefficient of powder-powder0.45
    rolling friction coefficient of powder-powder0.01
    restitution coefficient of powder-powder0.80
    surface energy density of powder-powder/(mJ/m2)0.1
    wall density/(kg/m3)7800
    wall Young's modulus/GPa80
    wall Poisson’s ratio0.30
    static friction coefficient of powder-wall0.20
    rolling friction coefficient of powder-wall0.01
    restitution coefficient of powder-wall0.80
    surface energy density of powder-wall/(mJ/m2)0.17
    下载: 导出CSV

    表  2  响应面分析因子及水平表

    Table  2.   Response surface analysis factors and levels

    FactorLevels of process parameters
    −α−101
    H/μm100125150175200
    D/mm1015202530
    ω/(r/min)50100150200250
    V/(mm/s)4080120160200
    下载: 导出CSV

    表  3  CCD设计表及仿真结果

    Table  3.   CCD design table and simulation results

    RunInput factorResponses
    H/μmD/mmω/(r/min)V/(mm/s)φC/%dm/(mg/mm)
    117525200800.426696.200.2239
    2175151001600.381893.660.2004
    3125251001600.310571.570.1164
    4150101501200.371088.520.1669
    5150201501200.385789.170.1736
    6175251001600.402594.800.2113
    7150201501200.386289.580.1738
    8150201502000.299878.830.1349
    9175252001600.390293.970.2048
    10150201501200.384289.690.1729
    1112525200800.350877.690.1316
    1217525100800.443196.690.2326
    1312515200800.353078.050.1324
    1415020501200.408791.830.1839
    15125151001600.282267.090.1058
    16175152001600.371992.750.1952
    17150201501200.390089.960.1755
    18150202501200.372188.230.1674
    19150301501200.392190.340.1764
    2012515100800.364379.990.1366
    2117515200800.422496.050.2218
    22200201501200.440698.290.2643
    23150201501200.383489.660.1725
    24150201501200.385489.670.1734
    25125252001600.288267.440.1081
    26100201501200.269862.910.0810
    2717515100800.430096.460.2279
    28125152001600.263061.950.0986
    2912525100800.378981.410.1421
    3015020150400.407091.700.1831
    下载: 导出CSV

    表  4  回归模型的方差分析

    Table  4.   Variance analysis of regression models

    IndicatorsMean squareF-valueP-valuePredicted R2
    φ0.0051320.56< 0.00010.9824
    C%0.022959.79< 0.00010.8990
    dm0.00401536.29< 0.00010.9964
    下载: 导出CSV

    表  5  粉体铺展性的优化结果

    Table  5.   Optimal results for powder spreadability

    SchemeφC/%dm /(mg/mm)
    predictive values0.444098.400.2660
    experimental values0.416194.120.2823
    errors6.28%4.35%6.13%
    下载: 导出CSV
  • [1] 卢秉恒. 增材制造技术——现状与未来. 中国机械工程, 2020, 31(1): 19-23 (Lu Bingheng. Additive manufacturing—current situation and future. China Mechanical Engineering, 2020, 31(1): 19-23 (in Chinese)
    [2] 李冉, 刘书田. 考虑表面层厚度不确定的稳健性拓扑优化方法. 力学学报, 2021, 53(3): 1471-1479 (Li Ran, Liu Shutian. Robust topology optimization of structures considering the uncertainty of surface layer thickness. Chinese Joumal of Theoretical and Applied Mechanics, 2021, 53(3): 1471-1479 (in Chinese)
    [3] Zhang J, Tan Y, Bao T, et al. Discrete element smulation of the effect of roller-spreading parameters on powder-bed density in additive manufacturing. Materials, 2020, 13(10): 2285 doi: 10.3390/ma13102285
    [4] Nan W, Pasha M, Bonakdar T, et al. Jamming during particle spreading in additive manufacturing. Powder Technology, 2018, 338: 253-262 doi: 10.1016/j.powtec.2018.07.030
    [5] Nan W, Pasha M, Ghadiri M. Numerical simulation of particle flow and segregation during roller spreading process in additive manufacturing. Powder Technology, 2020, 364: 811-821 doi: 10.1016/j.powtec.2019.12.023
    [6] 王超, 徐斌, 段尊义等. 面向增材制造的应力最小化连通性拓扑优化. 力学学报, 2021, 53(4): 1070-1080 (Wang Chao, Xu Bin, Duan Zunyi, et al. Additive manufacturing-oriented stress minimization topology optimization with connectivity. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1070-1080 (in Chinese) doi: 10.6052/0459-1879-20-389
    [7] Michael VDE, Verbelen L, Puyvelde PV. Assessing polymer powder flow for the application of laser sintering. Powder Technology, 2015, 286: 151-155 doi: 10.1016/j.powtec.2015.08.004
    [8] Spierings AB, Voegtlin M, Bauer T, et al. Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing. Progress in Additive Manufacturing, 2016, 1: 9-20 doi: 10.1007/s40964-015-0001-4
    [9] AI-Hashemi HMB, Al-Amoudi OSB. A review on the angle of repose of granular materials. Powder Technology, 2018, 330: 397-417 doi: 10.1016/j.powtec.2018.02.003
    [10] Vlachos N, Chang ITH. Investigation of flow properties of metal powders from narrow particle size distribution to polydisperse mixtures through an improved Hall-flowmeter. Powder Technology, 2011, 205: 71-80 doi: 10.1016/j.powtec.2010.08.067
    [11] Ruggi D, Barrès C, Charmeau J, et al. A quantitative approach to assess high temperature flow properties of a PA 12 powder for laser sintering. Additive Manufacturing, 2020, 33: 101143 doi: 10.1016/j.addma.2020.101143
    [12] Lefebvre LP, Whiting J, Nijikovsky B, et al. Assessing the robustness of powder rheology and permeability measurements. Additive Manufacturing, 2020, 35: 101203 doi: 10.1016/j.addma.2020.101203
    [13] Pleass C, Jothi S. Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by Selective Laser Melting. Additive Manufacturing, 2018, 24: 419-431 doi: 10.1016/j.addma.2018.09.023
    [14] Mussatto A, Groarke R, O'Neill A, et al. Influences of powder morphology and spreading parameters on the powder bed topography uniformity in powder bed fusion metal additive manufacturing. Additive Manufacturing, 2021, 38(6): 101807
    [15] Snow Z, Martukanitz R, Joshi S. On the development of powder spreadability metrics and feedstock requirements for powder bed fusion additive manufacturing. Additive Manufacturing, 2019, 28: 78-86 doi: 10.1016/j.addma.2019.04.017
    [16] Cordova L, Bor T, Smit M, et al. Measuring the spreadability of pre-treated and moisturized powders for laser powder bed fusion. Additive Manufacturing, 2020, 32: 101082 doi: 10.1016/j.addma.2020.101082
    [17] 张雪宽, 徐骥, 孙俊杰等. 竖冷设备中烧结矿石偏析行为的GPU高性能模拟. 力学学报, 2019, 51(1): 64-73 (Zhang Xuekuan, Xu Ji, Sun Junie, et al. Segregation behavior of sinter in vertically arrange cooler with high perfomance GPU simulation. Chinese Jounal of Theoretical and Applied Mechanics, 2019, 51(1): 64-73 (in Chinese) doi: 10.6052/0459-1879-18-339
    [18] 谭援强, 肖湘武, 张江涛等. 尼龙粉末在SLS 预热温度下的离散元模型参数确定及其流动特性分析. 力学学报, 2019, 51(1): 56-63 (Tan Yuanqiang, Xiao Xiangwu, Zhang Jiangtao, et al. Determination of discrete element model contact parameters of nylon powder at SLS preheating temperature and its flow characteristics. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 56-63 (in Chinese)
    [19] Ahmed M, Pasha M, Nan W, et al. A simple method for assessing powder spreadability for additive manufacturing. Powder Technology, 2020, 367: 671-679 doi: 10.1016/j.powtec.2020.04.033
    [20] Fouda YM, Fouda YM, Bayly AE, et al. A DEM study of powder spreading in additive layer manufacturing. Granular Matter, 2020, 22(1): 1-18 doi: 10.1007/s10035-019-0969-4
    [21] 张江涛, 谭援强, 包涛等. 滚筒振动对铺粉质量影响的离散元模拟. 中国机械工程, 2020, 31(14): 1717-1723 (Zhang Jiangtao, Tan Yuanqiang, Bao Tao, et al. Discrete element simulation for effects of roller's vibrations on powder spreading quality. China Mechanical Engineering, 2020, 31(14): 1717-1723 (in Chinese)
    [22] Chen H, Wei Q, Wen S, et al. Packing quality of powder layer during counter-rolling-type powder spreading process in additive manufacturing. International Journal of Machine Tools & Manufacture, 2020, 153: 103553
    [23] Lin WA, Yu A, El A, et al. Effects of spreader geometry on powder spreading process in powder bed additive manufacturing. Powder Technology, 2021, 384: 211-222 doi: 10.1016/j.powtec.2021.02.022
    [24] Escano LI, Parab ND, Xiong L, et al. Revealing particle-scale powder spreading dynamics in powder-bed-based additive manufacturing process by high-speed x-ray imaging. Scientific Reports, 2018, 8(1): 1-11
    [25] Mhda B, Rrk C, ZTY A, et al. Statistical modelling of endocrine disrupting compounds adsorption onto activated carbon prepared from wood using CCD-RSM and DE hybrid evolutionary optimization framework: comparison of linear vs non-linear isotherm and kinetic parameters. Journal of Molecular Liquids, 2020, 302: 112526 doi: 10.1016/j.molliq.2020.112526
    [26] Cundall PA, Strack ODL. Discussion: A discrete numerical model for granular assemblies. Géotechnique, 1980, 130: 331-336
    [27] Mindlin RD. Vibrations of doubly-rotated-cut quartz plates with monoclinic symmetry. International Journal of Solids & Structures, 1985, 21(6): 597-607
    [28] Johnson K, Kendall K. Surface energy and the contact of elastic solids. Proceedings of the Royal Society A, 1971, 324: 301-313
    [29] Chen H, Wei Q, Wen S, et al. Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method. International Journal of Machine Tools & Manufacture, 2017, 123: 146-159
    [30] 郑军辉. 尼龙粉末选择性激光烧结铺粉工艺数值模拟研究. [硕士学位论文]. 湘潭: 湘潭大学, 2016

    Zheng Junhui. Numerical research on powder paving process of nylon powder selective laser sintering. [Master Thesis]. Xiangtan: Xiangtan University, 2016 (in Chinese)
    [31] Parteli E, Pöschel T. Particle-based simulation of powder application in additive manufacturing. Powder Technology, 2016, 288: 96-102 doi: 10.1016/j.powtec.2015.10.035
    [32] 梅凡民, 雒遂, 陈金广. 一种改进的高浓度风沙图像的动态灰度阈值分割算法. 力学学报, 2018, 50(3): 699-707 (Mei Fanmin, Luo Sui, Chen Jinguang. An improved algorithm of dynamic gray-thresholding for segmenting dense aeolian sand particl images. Chinese Joumal of Theoretical and Applied Mechanics, 2018, 50(3): 699-707 (in Chinese) doi: 10.6052/0459-1879-18-040
    [33] Zhu HH, Fuh JYH, Lu L. The influence of powder apparent density on the density in direct laser-sintered metallic parts. International Journal of Machine Tools and Manufacture, 2007, 47(2): 294-298 doi: 10.1016/j.ijmachtools.2006.03.019
    [34] Box GEP, Wilson KBJR. On the experimental attainment of optimum conditions. Journal of the Royal Statal Society, 1951, 13(1): 1-45
    [35] 胡雅琴. 响应曲面二阶设计方法比较研究. [硕士学位论文]. 天津: 天津大学, 2005

    Hu Yaqin. A comparative study on the second-order designs in response surface methodology. [Master Thesis]. Tianjin: Tianjin University, 2005 (in Chinese)
    [36] Derringer GC, Suich R. Simultaneous optimization of several response variables. Journal of Quality Technology, 1980, 12: 214-219 doi: 10.1080/00224065.1980.11980968
    [37] 洪英, 党宏社, 宋晋国. 基于图像处理的不规则形体表面积测量方法. 计算机测量与控制, 2009, 17(9): 1679-1681 (Hong Ying, Dang Hongshe, Song Jinguo. Method for irregular solid surface area measurement based on image processing. Computer Measurement &Control, 2009, 17(9): 1679-1681 (in Chinese)
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-30
  • 网络出版日期:  2021-07-21

目录

    /

    返回文章
    返回

    重要通知

    近日,本刊多次接到来电,称有不法网站冒充《力学学报》杂志官网,并向投稿人收取高额审稿费用。在此,我们郑重申明:

    1.《力学学报》官方网站(https://lxxb.cstam.org.cn/)是本刊唯一的投稿渠道,《力学学报》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

    2.《力学学报》在稿件录用前不以任何形式向作者收取包括审稿费、中介费等在内的任何费用!请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62536271。

    感谢大家多年来对《力学学报》的支持与厚爱,欢迎继续关注我们!