EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机翼尺度效应对等离子体分离流动控制特性的影响

阳鹏宇 张鑫 赖庆仁 车兵辉 陈磊

阳鹏宇, 张鑫, 赖庆仁, 车兵辉, 陈磊. 机翼尺度效应对等离子体分离流动控制特性的影响. 力学学报, 待出版 doi: 10.6052/0459-1879-21-379
引用本文: 阳鹏宇, 张鑫, 赖庆仁, 车兵辉, 陈磊. 机翼尺度效应对等离子体分离流动控制特性的影响. 力学学报, 待出版 doi: 10.6052/0459-1879-21-379
Yang Pengyu, Zhang Xin, Lai Qingren, Che Binghui, Chen Lei. Experimental investigation of the influence of scaling effects of wings on the flow separation control using plasma actuators. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-21-379
Citation: Yang Pengyu, Zhang Xin, Lai Qingren, Che Binghui, Chen Lei. Experimental investigation of the influence of scaling effects of wings on the flow separation control using plasma actuators. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-21-379

机翼尺度效应对等离子体分离流动控制特性的影响

doi: 10.6052/0459-1879-21-379
基金项目: 国家自然科学基金项目(11902336)和空气动力学国家重点实验室创新基金项目(JBKYC190103)资助
详细信息
    作者简介:

    张鑫, 副研究员, 主要研究方向: 等离子体流动控制技术研究. lookzx@mail.ustc.edu.cn

  • 中图分类号: V211.A

EXPERIMENTAL INVESTIGATION OF THE INFLUENCE OF SCALING EFFECTS OF WINGS ON THE FLOW SEPARATION CONTROL USING PLASMA ACTUATORS

  • 摘要: 等离子体流动控制技术是一种以等离子体气动激励为控制手段的主动流动控制技术. 为了进一步提高等离子体激励器可控机翼尺度, 以超临界机翼SC(2)-0714大迎角分离流为研究对象, 以对称布局介质阻挡放电等离子体为控制方式, 以测力、粒子图像测速仪(PIV: Particle Image Velocimetry)为研究手段, 从等离子体激励器特性研究出发, 深入开展了机翼尺度效应对等离子体控制的影响研究, 提出了适用于分离流控制的能效比系数, 探索了分离流等离子体控制机理, 掌握了机翼尺度对分离流控制的影响规律. 结果表明, (1)随着机翼尺度的增大, 布置到机翼上的激励器电极长度会相应增加; 在本文的参数研究范围内, 激励器的平均消耗功率不会随电极长度的增加而线性增大; 当电极长度达到一定阈值时, 激励器的平均消耗功率趋于定值; (2)在固定雷诺数的情况下, 随着机翼尺度的增大, 等离子体的控制效果并未降低, 激励器能效比系数提高; (3)等离子体在主流区诱导的大尺度展向涡与在壁面附近产生的一系列拟序结构成为分离流控制的关键. 研究结果为实现真实飞机的等离子体分离流控制, 推动等离子体流动控制技术工程化应用提供了技术支撑.

     

  • 图  1  对称布局等离子体激励器布局示意图

    Figure  1.  Configuration of symmetrical DBD plasma actuator

    图  2  小尺度机翼测力实验的设备布置图

    Figure  2.  Sketch of the force measurement setup for small size wing

    图  3  小尺度机翼PIV实验的设备布置图

    Figure  3.  Schematic of the PIV experimental setup for small size wing

    图  4  布置在机翼上的激励器布局示意图

    Figure  4.  Layout diagram of DBD plasma actuator arranged on the wing

    图  5  大尺度机翼测力实验的设备布置图

    Figure  5.  Schematic of the force measurement setup for large size wing

    图  6  静止空气下对称布局激励器诱导流场的时均速度场

    Figure  6.  Time-averaged velocity field generated by the symmetrical DBD plasma actuator in quiescent air

    图  7  激励器消耗功率随电极长度的变化情况

    Figure  7.  Power consumption of plasma actuator versus the length of electrodes

    图  8  单位长度内激励器消耗功率随电极长度的变化情况

    Figure  8.  Power consumption of plasma actuator in unit length versus the length of electrodes

    9  施加激励前后小尺度机翼升力系数与阻力系数随迎角的变化情况

    9.  Lift coefficient and drag coefficient of small size wing versus angle of attack with plasma actuation off and on.

    图  9  施加激励前后小尺度机翼升力系数与阻力系数随迎角的变化情况(续)

    Figure  9.  Lift coefficient and drag coefficient of small size wing versus angle of attack with plasma actuation off and on (continued)

    图  10  施加激励前后大尺度机翼升力系数与阻力系数随迎角的变化情况

    Figure  10.  Lift coefficient and drag coefficient of large size wing versus angle of attack with plasma actuation off and on

    图  11  施加激励后提高的最大升力系数与推迟的失速迎角

    Figure  11.  Increased maximum lift coefficient and delayed stall angle of attack after plasma actuation

    图  12  两种工况下的能效比系数

    Figure  12.  Energy consumption ratio coefficient under two cases.

    图  13  施加激励前后机翼时均流场的变化情况

    Figure  13.  Time-averaged flow field around the wing with and without plasma (α = 18°).

    图  14  施加激励后机翼绕流流场的时空演化过程

    Figure  14.  Spatiotemporal evolution of flow field around the wing after plasma actuation (α = 18°).

    表  1  应变天平静态标定结果

    Table  1.   Static calibration results of balance

    Component of balancex axisy axis
    design load/N 180 35
    calibration load/N 180 35
    accuracy/% 0.030 0.030
    precision/% 0.018 0.018
    下载: 导出CSV

    表  2  BM500应变天平静态标定结果

    Table  2.   Static calibration results of BM500 balance

    Component of balancex axisy axis
    design load/N330010000
    calibration load/N375010000
    accuracy/%0.050.05
    precision/%0.0180.018
    下载: 导出CSV

    表  3  两次实验的控制效果对比

    Table  3.   Comparison of control effects between two experiments

    Wind TunnelIncreased maximum
    lift coefficient
    delayed stall angle
    of attack
    750 mm × 750 mm12.8%
    Φ3.2 m17.3%0.018
    下载: 导出CSV
  • [1] 罗振兵, 夏智勋, 邓雄等. 合成双射流及其流动控制技术研究进展. 空气动力学报, 2017, 35(2): 252-264 (Luo Zhenbin, Xia Zhixun, Deng Xiong, et al. Research progress of dual synthetic jets and its flow control technology. Acta Aerodynamica Sinica, 2017, 35(2): 252-264 (in Chinese)
    [2] 陈耀慧, 栗保明, 潘绪超, 刘怡昕. 电磁力控制翼型绕流分离的增升减阻效率研究. 力学学报, 2015, 47(3): 414-421 (Chen Yaohui, Li Baoming, Pan Xuchao, Liu Yixin. Research of the control efficiency of lift increase and drag reduction base on flow around hydrofoil controlled by Lorentz force. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 414-421 (in Chinese) doi: 10.6052/0459-1879-14-346
    [3] 赵国庆, 招启军, 顾蕴松等. 合成射流对失速状态下翼型大分离流动控制的试验研究. 力学学报, 2015, 47(2): 351-355 (Zhao Guoqing, Zhao Qijun, Gu Yunsong, et al. Experimental investigation of synthetic jet control on large flow separation of airfoil during stall. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 351-355 (in Chinese) doi: 10.6052/0459-1879-14-134
    [4] 张卫国, 史喆羽, 李国强, 杨永东, 黄明其, 白云卯. 风力机翼型动态失速等离子体流动控制数值研究. 力学学报, 2020, 52(6): 1678-1689 (Zhang Weiguo, Shi Zheyu, Li Guoqiang, Yang Yongdong, Huang Mingqi, Bai Yunmao. Numerical study on dynamic stall flow control for wind turbine airfoil using plasma actuator. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689 (in Chinese) doi: 10.6052/0459-1879-20-090
    [5] 黄广靖, 戴玉婷, 杨超. 低雷诺数俯仰振荡翼型等离子体流动控制. 力学学报, 2021, 53(1): 136-155 (Huang Guangjing, Dai Yuting, Yang Chao. Plasma-based flow control on pitching airfoil at low Reynolds number. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 136-155 (in Chinese)
    [6] 陈耀慧, 陈志华, 范宝春, 张辉, 李鸿志. 低雷诺数翼型绕流的电磁控制. 空气动力学学报, 2007, 25(6): 91-96 (Chen Yaohui, Chen Zhihua, Fan Baochun, Zhang Hui, Li Hongzhi. Electro-magnetic control of the flow past a foil at a low Reynolds number. Acta Aerodynamica Sinica, 2007, 25(6): 91-96 (in Chinese)
    [7] 左伟, 顾蕴松, 程克明, 刘源. 斜出口合成射流控制机翼分离流实验研究. 实验流体力学, 2014, 28(6): 45-50 (Zuo Wei, Gu Yunsong, Cheng Keming, Liu Yuan, Li Hongzhi. Electro-magnetic control of the flow past a foil at a low Reynolds number. Journal of Experiments in Fluid Mechanics, 2014, 28(6): 45-50 (in Chinese)
    [8] 刘强, 刘周, 白鹏等. 低雷诺数翼型蒙皮主动振动气动特性及流场结构数值研究. 力学学报, 2016, 48(2): 269-277 (Liu Qiang, Liu Zhou, Bai Peng, et al. Numerical study about aerodynamic characteristics and flow field structures for a skin of airfoil with active oscillation at low Reynolds number. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 269-277 (in Chinese) doi: 10.6052/0459-1879-15-188
    [9] 杨鹤森, 赵光银, 梁华. 翼型动态失速影响因素及流动控制研究进展. 航空学报, 2020, 41: 023605 (Yang Hesen, Zhao Guangyin, Liang Hua. Research progress and influence factors of airfoil dynamic stall flow control. Acta Aeronautica et Astronautica Sinica, 2020, 41: 023605 (in Chinese)
    [10] 吴云, 李应红. 等离子体流动控制研究进展与展望. 航空学报, 2015, 36(2): 381-405 (Wu Yun, Li Yinghong. Progress and outlook of plasma flow control. Acta Aeronoutica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese)
    [11] Wang J J, Choi K S, Feng L H, et al. Recent developments in DBD plasma flow control. Progress in Aerospace Sciences, 2013, 62: 52-78 doi: 10.1016/j.paerosci.2013.05.003
    [12] 冯立好, 王晋军, Choi KS. 等离子体环量控制翼型增升的实验研究. 力学学报, 2013, 45(6): 815-821 (Feng Lihao, Wang Jinjun, Choi Ks. Experimental investigation on lift increment of a plasma circulation control airfoil. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 815-821 (in Chinese) doi: 10.6052/0459-1879-13-012
    [13] 孟宣市, 杨泽人, 陈琦等. 低雷诺数下层流分离的等离子体控制. 航空学报, 2016, 37(7): 2112-2122 (Meng Xuanshi, Yang Zeren, Chen Qi, et al. Laminar separation control at low Reynolds numbers using plasma actuator. Acta Aeronoutica et Astronautica Sinica, 2016, 37(7): 2112-2122 (in Chinese)
    [14] Kelley C L, Bowles P O, Cooney J, He C, Corke T C. Leading edge separation control using alternating-current and nanosecond pulse plasma actuator. AIAA Journal, 2014, 52(9): 1871-1884 doi: 10.2514/1.J052708
    [15] Roupassov D V, Nikipelov A A, Nudnova M M, Starikovskii A Y. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge. AIAA Journal, 2009, 47(1): 168-185 doi: 10.2514/1.38113
    [16] Benard N, Moreau E. On the vortex dynamic of airflow reattachment forced by a single non-thermal plasma discharge actuator. Flow Turbulence Combust, 2011, 87(1): 1-37 doi: 10.1007/s10494-011-9325-4
    [17] Zheng J G, Cui Y D, Zhao Z J, Li J M, Khoo B C. Flow separation control over a naca 0015 airfoil using nanosecond-pulsed plasma actuator. AIAA Journal, 2018, 56(6): 2220-2234 doi: 10.2514/1.J056111
    [18] Sato M, Otsuka K, Asada K, Aono H, Nonomura T, Fujii K. Unified mechanisms for separation control around airfoil using plasma actuator with burst actuation over Reynolds number range of 103–106. Physics of Fluids, 2020, 32: 025102 doi: 10.1063/1.5136072
    [19] 梁华, 李应红, 程邦勤. 等离子体气动激励抑制翼型失速分离的仿真研究. 航空动力学报, 2008, 23(5): 777-783 (Liang Hua, Li Yinghong, Cheng Bangqin. Numerical simulation on airfoil stall separation suppression by plasma aerodynamic actuation. Journal of Aerospace Power, 2008, 23(5): 777-783 (in Chinese)
    [20] 赵光银, 李应红, 梁华等. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真. 物理学报, 2015, 64(1): 015101-015112 (Zhao Guangyin, Li Yinghong, Liang Hua, et al. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta Physica Sinica, 2015, 64(1): 015101-015112 (in Chinese) doi: 10.7498/aps.64.015101
    [21] 周岩, 刘冰, 王林, 罗振兵, 夏智勋. 两电极等离子体合成射流性能及出口构型影响仿真研究. 空气动力学学报, 2015, 33(6): 799-805 (Zhou Yan, Liu Bing, Luo Zhenbing, Xia Zhixun. Numerical simulation of performance characteristics of two-electrode plasma synthetic jet and the influence of different actuator orifice shapes. Acta Aerodynamica Sinica, 2015, 33(6): 799-805 (in Chinese)
    [22] 车学科, 聂万胜, 田希晖. SDBD等离子体中正负离子的动量传递效率. 高电压技术, 2014, 40(4): 1222-1228 (Che Xueke, Nie Wansheng, Tian Xihui. Momentum transfer efficiency of positive and negative ions in sdbd plasma. High Voltage Engineering, 2014, 40(4): 1222-1228 (in Chinese)
    [23] 李钢, 黄卫兵, 朱俊强, 聂超群. 平板附面层等离子体流动控制的数值模拟. 航空动力学报, 2009, 39(11): 1843-8149 (Li Gang, Huang Weibing, Zhu Junqiang, Nie Chaoqun. Numerical simulation of flat plate plasma flow control. Journal of Aerospace Power, 2009, 39(11): 1843-8149 (in Chinese)
    [24] 朱益飞, 吴云, 崔巍. 大气压空气纳秒脉冲等离子体气动激励特性数值模拟与实验验证. 航空学报, 2013, 34(9): 2081-2091 (Zhu Yifei, Wu Yun, Cui Wei. Numerical simulation and experimental validation of pulsed nanosecond plasma aerodynamic actuation in air under atmospheric pressure. Acta Aeronoutica et Astronautica Sinica, 2013, 34(9): 2081-2091 (in Chinese)
    [25] 倪芳原, 史志伟, 杜海. 纳秒脉冲等离子体激励器用于圆柱高速流动控制的数值模拟. 航空学报, 2014, 35(3): 657-665 (Ni Fangyuan, Shi Zhiwei, Du Hai. Numerical simulation of nanosecond pulsed plasma actuator for cylindrical high-speed flow control. Acta Aeronoutica et Astronautica Sinica, 2014, 35(3): 657-665 (in Chinese)
    [26] 徐双艳, 李江, 蔡晋生, 王光秋. 二维对称结构纳秒脉冲介质阻挡放电数值模拟. 高电压技术, 2015, 41(6): 2100-2107 (Xu Shuangyan, Li Jiang, Cai Jinsheng, Wang Guangqiu. Modeling of the two-dimensional nanosecond sdbd discharge with symmetry electrodes. High Voltage Engineering, 2015, 41(6): 2100-2107 (in Chinese)
    [27] 孟宣市, 宋科, 龙玥霄, 李华星. NS-SDBD等离子体流动控制研究现状与展望. 空气动力学学报, 2018, 36(6): 901-916 (Meng Xuanshi, Song Ke, Long Yuexiao, Li Huaxing. Airflow control by NS-SDBD plasma actuators. Acta Aerodynamica Sinica, 2018, 36(6): 901-916 (in Chinese) doi: 10.7638/kqdlxxb-2018.0078
    [28] 杜海, 史志伟, 程克明. 纳秒脉冲等离子体分离流控制频率优化及涡运动过程分析. 航空学报, 2016, 37(7): 2102-2111 (Du Hai, Shi Zhiwei, Cheng Keming. Frequency optimization and vortex dynamic process analysis of separated flow control by nanosecond pulsed plasma dischage. Acta Aeronoutica et Astronautica Sinica, 2016, 37(7): 2102-2111 (in Chinese)
    [29] Wu Z, Wong C W, Wang L, et al. A rapidly settled closed-loop control for airfoil aerodynamics based on plasma actuation. Experiments in Fluids, 2015, 56: 1-15 doi: 10.1007/s00348-014-1876-4
    [30] 魏彪, 梁华, 牛中国等. 三角翼微秒脉冲等离子体流动控制的试验研究. 高电压技术, 2016, 42(3): 782-789 (Wei Biao, Liang Hua, Niu Zhongguo, et al. Experimental investigation of delta-wing flow control by microsecond pulse plasma actuator. High Voltage Engineering, 2016, 42(3): 782-789 (in Chinese)
    [31] 王斌, 李华星. 等离子体对流动湍动能的控制. 航空学报, 2015, 36(12): 3809-3821 (Wang Bin, Li Huaxing. Control of flow turbulent kinetic energy by plasma. Acta Aeronoutica et Astronautica Sinica, 2015, 36(12): 3809-3821 (in Chinese)
    [32] 王健磊, 李华星, 孟宣市. 大迎角分离流场在等离子体控制下的特性研究. 实验流体力学, 2010, 24(2): 34-38 (Wang Jianlei, Li Huaxing, Meng Xuanshi. Study on the characteristics of fore-body separate flow at high angle of attack under plasma control. Journal of Experiments in Fluid Mechanics, 2010, 24(2): 34-38 (in Chinese) doi: 10.3969/j.issn.1672-9897.2010.02.008
    [33] 牛中国, 赵光银, 梁华. 三角翼DBD等离子体流动控制研究进展. 航空学报, 2018, 40: 122201 (Niu Zhongguo, Zhao Guangyin, Liang Hua. A review of studies of vortical flow control over delta wings using DBD plasma actuation. Acta Aeronautica et Astronautica Sinica, 2018, 40: 122201 (in Chinese)
    [34] 吴云, 张海灯, 于贤君等. 轴流压气机等离子体流动控制. 工程热物理学报, 2017, 38(7): 1396-1414 (Wu Yun, Zhang Haideng, Yu Xianjun, et al. Plasma flow control of axial compressor. Journal of Engineering Thermophysics, 2017, 38(7): 1396-1414 (in Chinese)
    [35] 张鑫, 黄勇, 阳鹏宇. 等离子体无人机失速分离控制飞行实验. 航空学报, 2018, 39(2): 121587 (Zhang Xin, Huang Yong, Wang Xunnian. Flight testing of flow separation control using plasma actuator. Acta Aeronoutica et Astronautica Sinica, 2018, 39(2): 121587 (in Chinese)
    [36] Su Z, Li J, Liang H, Zheng B R, Wei B, Chen J, Xie L K. UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge. Chinese Physics B, 2018, 27(10): 105205 doi: 10.1088/1674-1056/27/10/105205
    [37] Zhang X, Li H X, Huang Y. Wing flow separation control using asymmetrical and symmetrical plasma actuator. Journal of Aircraft, 2017, 54(1): 301-309 doi: 10.2514/1.C033845
    [38] Zhang X, Huang Y, Wang X N. Turbulent boundary layer separation control using plasma actuator at Reynolds number 2000000. Chinese Journal of Aeronautics, 2016, 29(5): 1237-1246 doi: 10.1016/j.cja.2016.08.006
    [39] 林麒, 黄印阳, 潘波等. 新型等离子体主动流动控制器及其诱导流场研究. 空气动力学学报, 2011, 32(1): 312-317 (Lin Qi, Huang Yinyang, Pan Bo, et al. Investigation on new-style plasma active flow controllers and its induced flow field. Acta Aerodynamica Sinica, 2011, 32(1): 312-317 (in Chinese)
    [40] 车学科, 聂万胜, 侯志勇等. 地面实验模拟高空等离子体流动控制效果. 航空学报, 2015, 36(2): 441-448 (Che Xueke, Nie Wansheng, Hou Zhiyong, et al. High altitude plasma flow control simulation through ground experiment. Acta Aeronoutica et Astronautica Sinica, 2015, 36(2): 441-448 (in Chinese)
    [41] 李文丰, 蔡晋生, 郝江南. 双极性等离子体激励器圆柱绕流控制实验研究. 实验流体力学, 2013, 27(3): 17-22 (Li Wenfeng, Cai Jinsheng, Hao Jiangnan. Flow control on a circular using multi-bipolar plasma actuator. Journal of Experiments in Fluid Mechanics, 2013, 27(3): 17-22 (in Chinese) doi: 10.3969/j.issn.1672-9897.2013.03.004
    [42] 张鑫, 黄勇, 阳鹏宇, 唐坤, 李华星. 等离子体激励器诱导射流的湍流特性研究. 力学学报, 2018, 50(4): 776-786 (Zhang Xin, Huang Yong, Yang Pengyu, Tang Kun, Li Huaxing. Investigation on the turbulent characteristics of the jet induced by a plasma actuator. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 776-786 (in Chinese) doi: 10.6052/0459-1879-17-392
    [43] 张鑫, 黄勇, 李华星. 等离子体激励器控制圆柱绕流的实验研究. 力学学报, 2018, 50(6): 1396-1405 (Zhang Xin, Huang Yong, Li Huaxing. Flow control over a circular cylinder using plasma actuators. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1396-1405 (in Chinese) doi: 10.6052/0459-1879-18-279
    [44] Debien A, Benard N, Moreau E. Streamer inhibition for improving force and electric wind produced by DBD actuators. Journal of Physics D Applied Physics, 2012, 45(21): 215201-215213 doi: 10.1088/0022-3727/45/21/215201
    [45] Little J C. High-Lift Airfoil Separation Control with Dielectric Barrier Discharge Plasma Actuators [PhD Thesis]. Columbus: The Ohio State University, 2010.
    [46] 郝琳召, 张彬乾, 陈真利. 纳秒等离子体激励控制翼型流动分离机理研究. 航空工程进展, 2014, 5(1): 25-32 (Hao Linzhao, Zhang Binqian, Chen Zhenli. Investigation on mechanisms of separation control over an airfoil using nanosecond pulsed plasma actuator. Advances in Aeronautical Science and Engineering, 2014, 5(1): 25-32 (in Chinese) doi: 10.3969/j.issn.1674-8190.2014.01.005
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-10-09

目录

    /

    返回文章
    返回