EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

失效概率矩独立全局灵敏度指标的高效算法

员婉莹 吕震宙 蒋献

员婉莹, 吕震宙, 蒋献. 失效概率矩独立全局灵敏度指标的高效算法[J]. 力学学报, 2016, 48(4): 1004-1012. doi: 10.6052/0459-1879-15-411
引用本文: 员婉莹, 吕震宙, 蒋献. 失效概率矩独立全局灵敏度指标的高效算法[J]. 力学学报, 2016, 48(4): 1004-1012. doi: 10.6052/0459-1879-15-411
Yun Wanying, Lü Zhenzhou, Jiang Xian. AN EFFICIENT METHOD FOR FAILURE PROBABILITY-BASED MOMENT-INDEPENDENT SENSITIVITY ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 1004-1012. doi: 10.6052/0459-1879-15-411
Citation: Yun Wanying, Lü Zhenzhou, Jiang Xian. AN EFFICIENT METHOD FOR FAILURE PROBABILITY-BASED MOMENT-INDEPENDENT SENSITIVITY ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 1004-1012. doi: 10.6052/0459-1879-15-411

失效概率矩独立全局灵敏度指标的高效算法

doi: 10.6052/0459-1879-15-411
基金项目: 国家自然科学基金(51475370) 和中央高效基本科研业务费专项资金(3102015BJ(II)CG009) 资助项目.
详细信息
    通讯作者:

    吕震宙,教授,主要研究方向:可靠性工程,灵敏度分析.E-mail:zhenzhoulu@nwpu.edu.cn

  • 中图分类号: TB114.3

AN EFFICIENT METHOD FOR FAILURE PROBABILITY-BASED MOMENT-INDEPENDENT SENSITIVITY ANALYSIS

  • 摘要: 基于失效概率的矩独立全局灵敏度指标能够有效地分析输入变量的不确定性对结构系统失效概率的影响程度. 然而,目前以抽样方式来计算该灵敏度指标的方法都不能最大程度地利用样本. 因此,研究了在准确计算该指标的基础上如何提高样本的利用率. 基于所证明的连续区间上的全方差公式,提出了基于空间分割及重要抽样法来高效计算该指标的方法,其仅需一组样本,且计算量与输入变量的维数无关. 该方法首先通过重要抽样密度抽取一组样本,使得抽取到的样本以较大的概率落入失效域从而加快计算的收敛速度,其次,通过重复利用这一组样本来计算出各个输入变量的基于失效概率的矩独立全局灵敏度指标,大大提高了样本的利用率和计算效率. 验证算例的计算结果,说明了所提方法在计算效率、计算精度、收敛性及稳健性方面都较已有同类方法高,具有更好的工程适用性.

     

  • 1 Saltelli A. Sensitivity analysis for importance assessment. Risk Analysis, 2002, 22(3): 579-590  
    2 Borgonovo E, Apostolakis GE. A new importance measure for risk-informed decision-making. Reliability Engineering and System Safety, 2001, 72(2): 193-212  
    3 Borgonovo E, Apostolakis GE, Tarantola S, et al. Comparison of local and global sensitivity analysis techniques in probability safety assessment. Reliability Engineering and System Safety, 2003, 79: 175-185  
    4 Saltelli A, Ratto M, Andreffs T, et al. Global Sensitivity Analysis. The Primer. John Wiley & Sons, 2008
    5 Saltelli A, Marivoet J. Non-parametric statistics in sensitivity analysis for model output: a comparison of selected techniques. Reliability Engineering and System Safety, 1990, 28(2): 229-253  
    6 Iman RL, Johnson ME, Watson Jr CC. Sensitivity analysis for computer model projections of hurricane losses. Risk analysis, 2005, 25(5): 1277-1297  
    7 Zhang XF, Pandey MD. An effective approximation for variancebased global sensitivity analysis. Reliability Engineering and System Safety, 2014, 121: 164-174  
    8 郝文锐,吕震宙,魏鹏飞. 多项式输出中相关变量的重要性测度分析. 力学学报,2012,44(1): 167-173 (HaoWenrui, Lü Zhenzhou, Wei Pengfei. Importance measure of correlated variables in polynomial output. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 167-173 (in Chinese))
    9 Wei P, Lu ZZ, Song JW. A new variance-based global sensitivity analysis technique. Computation Physics Communication, 2013, 184(10): 2540-2551
    10 Deman G, Konakli K, Sudret B, et al. Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in mult-layered hydrogeological model. Reliability Engineering and System Safety, 2016, 147: 156-169  
    11 Pianosi F, Wagener T. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environmental Modelling & Software, 2015, 67: 1-11  
    12 Borgonovo E. A new uncertainty importance measure. Reliability Engineering and System Safety, 2007, 92(6): 771-784  
    13 Zhou CC, Lu ZZ, Zhang LG, et al. Moment independent sensitivity analysis with correlations. Applied Mathematical Modelling, 2014, 38(19): 4885-4896
    14 Camboa F, Klein T, Lagnoux A. Sensitivity analysis based on Cramer von Mises Distance. arXiv: 1506.04133 [math.PR], 1-20
    15 Cui LJ, Lu ZZ, Zhao XP. Moment-independent importance measure of basic random variable and its probability density evolution solution. Science China Technological Sciences, 2010, 53(4): 1138-1145  
    16 Li LY, Lu ZZ, Feng J, et al. Moment-independent importance measure of basic variable and its state dependent parameter solution. Structural Safety, 2012, 38: 40-47  
    17 张磊刚, 吕震宙,陈军. 基于失效概率的矩独立重要性测度的高效算法. 航空学报,2014,35(8): 2199-2206 (Zhang Leigang, Lü Zhenzhou, Chen Jun. An efficient method of failure probabilitybased moment-independent importance measure. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2199-2206 (in Chinese))
    18 Wei PF, Lu ZZ, Hao WR, et al. Efficient sampling methods for global reliability sensitivity analysis. Computation Physics Communication, 2012, 183(8): 1728-1743  
    19 Plischke E, Borgonovo E, Smith CL. Global sensitivity measures from given data. European Journal of Operational Research, 2013, 226(3): 536-550  
    20 Zhai QQ, Yang J, Zhao Y. Space-partition method for the variancebased sensitivity analysis: Optimal partition scheme and comparative study. Reliability Engineering and System Safety, 2014, 131: 66-82  
    21 Mood AM, Graybill FA, Boes DC. Introduction to the Theory of Statistics. 3rd edn. McGraw-Hill, 1974
    22 Harbitz A. An efficient sampling method for probability of failure calculation. Structural Safety, 1986, 3(2): 109-115  
    23 Melchers RE. Importance sampling in structural system. Structural Safety, 1989, 6(1): 3-10  
    24 Au SK, Beck JL. A new adaptive importance sampling scheme. Structural Safety, 1999, 21(2): 135-158  
    25 Au SK, Beck JL. Importance sampling in high dimensions. Structural Safety, 2003, 25(2): 139-163  
    26 戴鸿哲,薛国锋,王伟. 基于小波阈值密度的自适应重要抽样方法. 力学学报,2014, 46(3): 480-484 (Dai Hongzhe, Xue Guofeng, Wang Wei. A wavelet thresholding density-based adaptive importance sampling method. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 480-484 (in Chinese))
    27 Hasfer AM, Lind NC. Exact and invariant second moment code format. Journal of Engineering Mechanics, ASCE, 1974, 100(1): 111-121
    28 Dai HZ,WangW. Application of low-discrepancy sampling method in structural reliability analysis. Structural Safety, 2009, 31(1): 55-64  
    29 Sobol IM. Uniformly distributed sequences with additional uniformity properties. USSR Computational Mathematics and Mathematical Physics, 1976, 16: 236-242
    30 Sobol IM. On quasi-Monte Carlo integrations. Mathematics and Computers in Simulation, 1998, 47(2): 103-112
  • 加载中
计量
  • 文章访问数:  678
  • HTML全文浏览量:  45
  • PDF下载量:  442
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-11
  • 修回日期:  2016-04-12
  • 刊出日期:  2016-07-18

目录

    /

    返回文章
    返回