EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱不连续问题扩展有限元法的数值精度研究

江守燕 杜成斌

江守燕, 杜成斌. 弱不连续问题扩展有限元法的数值精度研究[J]. 力学学报, 2012, 44(6): 1005-1015. doi: 10.6052/0459-1879-12-102
引用本文: 江守燕, 杜成斌. 弱不连续问题扩展有限元法的数值精度研究[J]. 力学学报, 2012, 44(6): 1005-1015. doi: 10.6052/0459-1879-12-102
Jang Shouyan, Du Chengbin. STUDY ON NUMERICAL PRECISION OF EXTENDED FINITE ELEMEMT METHODS FOR MODELING WEAK DISCONTINUTIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1005-1015. doi: 10.6052/0459-1879-12-102
Citation: Jang Shouyan, Du Chengbin. STUDY ON NUMERICAL PRECISION OF EXTENDED FINITE ELEMEMT METHODS FOR MODELING WEAK DISCONTINUTIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1005-1015. doi: 10.6052/0459-1879-12-102

弱不连续问题扩展有限元法的数值精度研究

doi: 10.6052/0459-1879-12-102
基金项目: 国家自然科学基金(11132003,50779011)和江苏省研究生创新工程(CX10B_202Z)资助项目.
详细信息
    通讯作者:

    杜成斌

  • 中图分类号: TB115

STUDY ON NUMERICAL PRECISION OF EXTENDED FINITE ELEMEMT METHODS FOR MODELING WEAK DISCONTINUTIES

Funds: The project was supported by the National Natural Science Foundation of China (11132003, 50779011) and the Innovative Project for Graduate Students of Jiangsu Province (CX10B_202Z).
  • 摘要: 主要研究了扩展有限元法(extended finite element method, XFEM)在处理弱不连续问题时不同改进函数形式对XFEM数值求解精度的影响,阐述了各种改进函数影响XFEM求解精度的关键因素,指出校正的扩展有限元法(corrected-XFEM)能够提高数值求解精度的实质在于它拓展了改进结点域,即将常规扩展有限元法(standard-XFEM)的改进结点域增加一层作为corrected-XFEM的改进结点域,文中建议延拓corrected-XFEM的改进结点域,即在corrected-XFEM的改进结点域基础上再增加一层改进结点. 利用水平集函数表征材料内部的不连续界面,推导了XFEM求解的支配方程,给出了一种改进单元的数值积分方案以及改进单元处高精度应力的求解方法. 含夹杂问题的数值计算结果表明:建议的延拓corrected-XFEM改进结点域的方法能够明显提高XFEM的数值求解精度.

     

  • Sukumar N, Chopp DL, Moës N, et al. Modeling Holes and inclusions by level sets in the extended finite element method. Computer Methods in Applied Mechanics & Engineering, 2001, 190(46-47): 6183-6200
    Osher S, Sethian JA. Fronts propagating with curvature- dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79(1): 12-49  
    Chessa J, Wang HW, Belytschko T. On the construction of blending elements for local partition of unity enriched finite elements. International Journal for Numerical Methods in Engineering, 2003, 57(7): 1015-1038  
    Belytschko T, Parimi C, Moës N, et al. Structured extended finite element methods for solids defined by implicit surfaces. International Journal for Numerical Methods in Engineering, 2003, 56(4): 609-635  
    Hiriyur B, Waisman H, Deodatis G. Uncertainty quantification in homogenization of heterogeneous microstructures modeled by XFEM. International Journal for Numerical Methods in Engineering, 2011, 88: 257-278  
    Moës N, Cloirec M, Cartraud P, et al. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics & Engineering, 2003, 192(28-30): 3163-3177
    应宗权, 杜成斌, 王友元. 颗粒增强复合材料的扩展有限元模拟方法. 水利学报, 2011, 42(2): 198-203 (Ying Zongquan, Du Chengbin, Wang Youyuan. Numerical simulation of particle reinforced composite using extended finite element method. Journal of Hydraulic Engineering, 2011, 42(2): 198-203 (in Chinese))
    Singh IV, Mishra BK, Bhattacharya S, et al. The numerical simulation of fatigue crack growth using extended finite element method. International Journal of Fatigue, 2012, 36: 109-119  
    Legrain G, Cartraud P, Perreard I, et al. An X-FEM and level set computational approach for image-based modelling: Application to homogenization. International Journal for Numerical Methods in Engineering, 2011, 86: 915-934  
    Fries T. A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 2008, 75(5): 503-532  
    Cheng KW, Fries T. Higher-order XFEM for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering, 2010, 82(5): 564-590
    应宗权, 杜成斌, 程丽. 含夹杂非均质材料的扩展有限元数值模拟. 河海大学学报(自然科学版), 2008, 36(4): 546-549 (Ying Zongquan, Du Chengbin, Cheng Li. Application of extended finite element method in heterogeneous materials with inclusions. Journal of Hohai University(Natural Sciences), 2008, 36(4): 546-549 (in Chinese))
    余天堂. 含裂纹体的数值模拟. 岩石力学与工程学报, 2005, 24(24): 4434-4438 (Yu Tiantang. Numerical simulation of a body with cracks. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(24): 4434-4438 (in Chinese))
    李建波, 陈健云, 林皋. 非网格重剖分模拟宏观裂纹体的扩展有限单元法(1: 基础理论). 计算力学学报, 2006, 23(2): 207-213 (Li Jianbo, Chen Jianyun, Lin Gao. Extended finite element method for modeling cracks. Chinese Journal of Computational Mechanics, 2006, 23(2): 207-213 (in Chinese))
    方修君, 金峰. 基于ABAQUS 平台的扩展有限元法. 工程力学, 2007, 24(7): 6-10 (Fang Xiujun, Jin Feng. Extended finite element method based on ABAQUS. Engineering Mechanics, 2007, 24(7): 6-10 (in Chinese))
    Zhuang Z, Cheng BB. Development of X-FEM methodology and study on mixed-mode crack propagation. Acta Mechanica Sinica, 2011, 27(3): 406-415  
    Shibanuma K, Utsunomiya T. Reformulation of XFEM based on PUFEM for solving problem caused by blending elements. Finite Elements in Analysis and Design, 2009, 45(11): 806-816  
    Du CB, Sun LG. Numerical simulation of aggregate shapes of two dimensional concrete and its application. International Journal of Aerospace Engineering, 2007, 20(3): 172-178  
  • 加载中
计量
  • 文章访问数:  2497
  • HTML全文浏览量:  51
  • PDF下载量:  1212
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-17
  • 修回日期:  2012-08-09
  • 刊出日期:  2012-11-18

目录

    /

    返回文章
    返回