EXPERIMENTAL STUDY ON HYBRID DETONATION OF HYDROGEN-AIR MIXTURE WITH SUSPENDED METAL PARTICLES
-
摘要: 混合爆轰现象既包含气相反应又包含两相反应, 具有复杂性和多样性. 爆轰推进技术在新领域的突破性应用与发展, 依赖对爆轰现象的深刻认识. 文章采用卧式爆轰管开展铝粉/氢气/空气混合爆轰试验, 将μm和nm量级的球形铝粉与当量比的氢气和空气通过扬尘充分混合, 在长13 m和直径224 mm的管内直接起爆混合物. 试验中观测到不同种类的混合爆轰波, 包括双波面和单波面结构. 通过对爆轰燃气中铝粉点火燃烧特性的分析, 阐明了两相反应对铝粉/氢气/空气混合爆轰波结构的直接影响. 粒径100 nm和1 μm时, 混合爆轰呈现单波面结构, 对比气相爆轰爆速和压力峰值都有增加, 铝粉点火释热开始于声速面之前. 粒径20 μm和40 μm铝粉点火较慢, 混合爆轰呈现出双波面结构, 气相反应释热支持第一道波, 而铝粉燃烧支持第二道波. 粒径10 μm时, 测得爆轰波压力曲线是单波峰, 峰值压力有大幅提高, 但是爆速并没有增加. 其本质是两波面距离很近的双波面结构, 由于传感器空间辨识能力的不足而无法在压力曲线中区分. 混合爆轰试验结果充分解释了铝粉/氢气/空气混合爆轰现象, 反映了铝粉在复杂条件下的燃烧特性, 并且明确了铝粉的点火燃烧特性对混合爆轰现象的影响机理.Abstract: Hybrid detonation phenomena encompass a complex interplay of gas-phase and heterogeneous reactions, showcasing a rich diversity of behaviors. To unlock the transformative potential of detonation propulsion technology in novel applications, a profound understanding of hybrid detonation is paramount. In this study, we harnessed a horizontal detonation tube to conduct experiments on hybrid detonations involving hydrogen-air mixtures and suspended aluminum powder. Through meticulous blending of micro-sized and nano-sized spherical aluminum powders with stoichiometric proportions of hydrogen and air, the resulting mixture was directly initiated within a 13-meter-long and 224-millimeter-diameter detonation section. This investigation unveiled an array of hybrid detonation waveforms, encompassing both single and double shock structures, depending on the particle sizes of the aluminum powders. By delving into the ignition and combustion characteristics of aluminum particles within the detonation gases, we elucidated the direct impact of heterogeneous reactions on the wave structure of hybrid detonations. For instance, when using 100 nm or 1 μm aluminum particles, the hybrid detonations displayed single-shock structures, featuring heightened detonation velocity and peak pressure compared to their gas-phase counterparts. Notably, the exothermicity of aluminum particles' ignition initiated prior to reaching the sonic surface. Conversely, with 20 μm or 40 μm particles, a delayed ignition led to double-shock structures in the hybrid detonations, where gas-phase reactions supported the initial shock, while heterogeneous combustion bolstered the subsequent one. Notably, for 10 μm particles, the pressure curves exhibited a singular peak with significantly elevated pressure, despite no increase in detonation velocity. This essentially represented a double-shock structure with closely spaced shocks, indistinguishable within the pressure curves due to limitations in the sensors' spatial resolution. The experimental outcomes collectively offer an extensive comprehension of hybrid detonation. They shed light on the ignition and combustion characteristics of aluminum particles under intricate conditions, and underscore the pivotal role of heterogeneous reactions in shaping the complex nature of hybrid detonation.
-
Key words:
- metal powder /
- hybrid detonation /
- heterogeneous reactions /
- ignition delay /
- chemical reaction flow
-
表 1 气相爆轰理论计算结果
Table 1. Theoretical results of gas phase detonation
Parameter Value mole ratio (H2/O2/N2) 2.0 : 1.0 : 4.3 detonation velocity/(m·s−1) 1923 C-J temperature/K 2845 C-J pressure/bar 14.87 表 2 混合爆轰实验工况
Table 2. Hybrid detonation test condition
No. Initial pressure/bar Nominal size/μm Powder concentration/(kg·m−3) 1 1.0 40 0.3 2 1.0 20 0.3 3 1.0 10 0.3 4 1.0 1 0.3 5 1.0 0.1 0.15 表 3 混合爆轰波测试结果汇总
Table 3. Summary of hybrid detonation test results
Nominal size/μm First wave velocity/(km·s−1) Second wave velocity/(km·s−1) Ignition delay before/after sonic surfaceⅠ 40 1.87 1.68 after 20 1.86 1.89 10 1.84 — 1 1.93 — before 0.1 1.91 — -
[1] Strauss WA. Investigation of the detonation of aluminum powder-oxygen mixtures. AIAA Journal, 1968, 6(9): 1753-1756 doi: 10.2514/3.4855 [2] Nettleton MA, Stirling R. Detonations in suspensions of coal dust in oxygen. Combustion and Flame, 1973, 21(3): 307-314 doi: 10.1016/S0010-2180(73)80053-7 [3] Fedorov AV. Structure of the heterogeneous detonation of aluminum particles dispersed in oxygen. Combustion, Explosion and Shock Waves, 1992, 28(3): 277-286 doi: 10.1007/BF00749644 [4] Tatyana K, Sergey L. Detonation flows in aluminum particle gas suspensions, inhomogeneous in concentrations. Journal of Loss Prevention in the Process Industries, 2021, 72: 104522 doi: 10.1016/j.jlp.2021.104522 [5] Zhang F. Detonation of Gas-particle Flow. Berlin, Heidelberg: Springer, 2009 [6] Widener JF, Beckstead MW. Aluminum combustion modeling in solid propellant combustion products//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, USA, 1998 [7] 张建侃, 赵凤起, 秦钊等. 铝基合金燃料的研究及其在固体推进剂中的应用进展. 火炸药学报, 2023, 46(2): 101-116 (Zhang Jiankan, Zhao Fengqi, Qin Zhao, et al. Research progress of Al-based alloy fuels and perspectives for applications in solid propellants. Chinese Journal of Explosives & Propellants, 2023, 46(2): 101-116 (in Chinese) doi: 10.14077/j.issn.1007-7812.202203029Zhang Jiankan, Zhao Fengqi, Qin Zhao, et al. Research Progress of Al-based Alloy Fuels and Perspectives for Applications in Solid Propellants. Chinese Journal of Explosives & Propellants, 2023, 46(2): 101-116 (in Chinese) doi: 10.14077/j.issn.1007-7812.202203029 [8] Kailasanath K. Review of propulsion applications of detonation waves. AIAA Journal, 2000, 38(9): 1698-1708 doi: 10.2514/2.1156 [9] 俞鸿儒. 探索发展激波风洞爆轰驱动技术. 力学学报, 2011, 43(6): 978-983 (Yu Hongru. Development study of detonation driving techniques for a shock tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 978-983 (in Chinese) doi: 10.6052/0459-1879-2011-6-lxxb2011-331Yu Hongru. Development study of detonation driving techniques for a shock tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 978-983 (in Chinese) doi: 10.6052/0459-1879-2011-6-lxxb2011-331 [10] 李旭东, 王爱峰, 王春等. 脉冲爆轰发动机的系统性能分析. 力学学报, 2010, 42(3): 366-372 (Li Xudong, Wang Aifeng, Wang Chun, et al. System performance analysis of pulse detonation engines. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 366-372 (in Chinese) doi: 10.6052/0459-1879-2010-3-2008-635Li Xudong, Wang Aifeng, Wang Chun, et al. System performance analysis of pulse detonation engines. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 366-372 (in Chinese) doi: 10.6052/0459-1879-2010-3-2008-635 [11] 杨鹏飞, 张子健, 杨瑞鑫等. 斜爆轰发动机的推力性能理论分析. 力学学报, 2021, 53(10): 2853-2864 (Yang Pengfei, Zhang Zijian, Yang Ruixin, et al. Theorical study on propulsive performance of oblique detonation engine. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2853-2864 (in Chinese) doi: 10.6052/0459-1879-21-206Yang Pengfei, Zhang Zijian, Yang Ruixin, et al. Theorical study on propulsive performance of oblique detonation engine. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2853-2864 (in Chinese) doi: 10.6052/0459-1879-21-206 [12] Daniel AR, Mason T, Jonathan S, et al. Stabilized detonation for hypersonic propulsion. Proceedings of the National Academy of Sciences, 2021, 118(20): e2102244118 doi: 10.1073/pnas.2102244118 [13] 丁陈伟, 翁春生, 武郁文等. 基于液体碳氢燃料的旋转爆轰燃烧特性研究. 爆炸与冲击, 2022, 42(2): 022101 (Ding Chenwei, Weng Chunsheng, Wu Yuwen, et al. Combustion characteristics of rotating detonation based on liquid hydrocarbon fuel. Explosion and Shock Waves, 2022, 42(2): 022101 (in Chinese)Ding Chenwei, Weng Chunsheng, Wu Yuwen, et al. Combustion characteristics of rotating detonation based on liquid hydrocarbon fuel. Explosion and Shock Waves, 2022, 42(2): 022101 (in Chinese) [14] Xu H, Ni XD, Su XJ, et al. Experimental investigation on the application of the coal powder as fuel in a rotating detonation combustor. Applied Thermal Engineering, 2022, 213: 118642 doi: 10.1016/j.applthermaleng.2022.118642 [15] Wu WB, Wang YN, Han WB, et al. Experimental research on solid fuel pre-combustion rotating detonation engine. Acta Astronautica, 2023, 205: 258-266 doi: 10.1016/j.actaastro.2023.02.007 [16] Wu WB, Wang YN, Wu KW, et al. Experimental evaluation of aluminum powder fuel in a hydrogen/oxygen detonation tube. International Journal of Hydrogen Energy, 2023, 3: 078 [17] Palaszewski B, Jurns J, Breisacher K, et al. Metallized gelled propellants combustion experiments in a pulse detonation engine//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, 2004 [18] Liu QM, Li XD, Bai CH. Deflagration to detonation transition in aluminum dust–air mixture under weak ignition condition. Combustion and Flame, 2009, 156(4): 914-921 [19] 李小东, 王晶禹, 刘庆明等. 大型水平爆轰管中悬浮铝粉爆炸过程的实验研究. 实验力学, 2009, 24(5): 395-400 (Li Xiaodong, Wang Jingyu, Liu Qingming, et al. Experimental study of suspended aluminum dust explosion in a large-size horizontal detonation tube. Journal of Experimental Mechanics, 2009, 24(5): 395-400 (in Chinese)Liu Qingming, Wang Jingyu, Li Xiaodong, et al. Experimental study of suspended aluminum dust explosion in a large-size horizontal detonation tube. Journal of Experimental Mechanics, 2009, 24(5): 395-400(in Chinese) [20] 刘晓利, 李鸿志, 叶经方等. 铝粉−空气混合物的爆轰管研究. 弹道学报, 1993, 16(2): 76-82 (Liu Xiaoli, Li Hongzhi, Ye Jingfang, et al. Detonation tube studies of aluminum powder-air mixture. Journal of Ballistics, 1993, 16(2): 76-82 (in Chinese)Liu Xiaoli, Li Hongzhi, Ye Jingfang, et al. Detonation tube studies of aluminum powder-air mixture. Journal of Ballistics, 1993, 16(2): 76-82(in Chinese) [21] 刘晓利, 李鸿志, 郭建国等. 铝粉−空气混合物燃烧转爆轰(DDT)过程的实验研究. 爆炸与冲击, 1995, 15(3): 217-228 (Liu Xiaoli, Li Hongzhi, Guo Jianguo, et al. An experimental investigation of deflagration to detonation transition (DDT) in aluminum dust-air mixture. Explosion and Shock Waves, 1995, 15(3): 217-228 (in Chinese)Liu Xiaoli, Li Hongzhi, Guo Jianguo, et al. An experimental investigation of deflagration to detonation transition (DDT) in aluminum dust-air mixture. Explosion and Shock Waves, 1995, 15(3): 217-228(in Chinese) [22] Zhang F. Detonation in reactive solid particle-gas flow. Journal of Propulsion and Power, 2006, 22(6): 1289-1309 doi: 10.2514/1.18210 [23] Zhang F, Gerrard K. Reaction mechanism of aluminum-particle-air detonation. Journal of Propulsion and Power, 2009, 25(4): 845-858 doi: 10.2514/1.41707 [24] Veyssiere B. Detonation in gas-particle mixtures. Journal of Propulsion and Power, 2006, 22(6): 1269-1288 doi: 10.2514/1.18378 [25] Veyssiere B, Khasainov BA. Structure and multiplicity of detonation regimes in heterogeneous hybrid mixtures. Shock Waves, 1994, 4(3): 171-186 [26] Veyssiere B, Ingignoli W. Existence of the detonation cellular structure in two-phase hybrid mixtures. Shock Waves, 2003, 12: 291-299 doi: 10.1007/s00193-002-0168-8 [27] Lee J. The Detonation Phenomenon. Cambridge: Cambridge University Press, 2008 [28] 陆星宇, 李进平, 陈宏等. 用于爆轰驱动的射流起爆实验研究. 爆炸与冲击, 2019, 39(6): 062102 (Lu Xingyu, Li Jinping, Chen Hong, et al. Experimental study on jet initiation for detonation driver. Explosion And Shock Waves, 2019, 39(6): 062102 (in Chinese) doi: 10.11883/bzycj-2018-0223LU Xingyu, LI Jinping, CHEN Hong, et al. Experimental study on jet initiation for detonation driver. Explosion And Shock Waves, 2019, 39(6): 062102 (in Chinese) doi: 10.11883/bzycj-2018-0223 [29] 童秉纲, 孔祥言, 邓国华. 气体动力学. 北京: 高等教育出版社. 1996Tong Bingang, Kong Xiangyan, Deng Guohua. Gas Dynamics. Beijing: Higher Education Press, 1996 (in Chinese) [30] 洪滔, 秦承森. 爆轰波管中铝粉尘爆轰的数值模拟. 爆炸与冲击, 2004, 24(3): 193-200 (Hong Tao, Qin Chengsen. Numerical simulation of dust detonation of aluminum powder in explosive tubes. Explosion and Shock Waves, 2004, 24(3): 193-200 (in Chinese)Hong Tao, Qin Chengsen. Numerical simulation of dust detonation of aluminum powder in explosive tubes. Explosion and Shock Waves, 2004, 24(3): 193-200(in Chinese) [31] Veyssiere B, Khasainov BA. A model for steady, plane, double-front detonation in gaseous explosive mixtures with aluminum particles in suspension. Combustion and Flame, 1991, 85: 241-253 doi: 10.1016/0010-2180(91)90191-D [32] Sichel M, Tonello NA, Oran ES, et al. A two-step kinetics model for numerical simulation of explosions and detonations in H2-O2 mixtures. Proceedings of the Royal Society of London, Series A, 2002, 458: 49-82 doi: 10.1098/rspa.2001.0853 [33] Sundaram DS, Yang V, Zarko VE. Combustion of nano aluminum particles. Combustion, Explosion, and Shock Waves, 2015, 51(2): 173-196 doi: 10.1134/S0010508215020045 -