PHASE TRANSITION AND SPALL BEHAVIOR OF TIN UNDER RAMP WAVE COMPRESSION
-
摘要: 获取不同热力学路径下锡的动态响应实验数据, 是深入研究其相变和损伤物理过程的基础. 利用小型磁驱装置CQ-4完成了金属锡的斜波加载实验, 获取了锡含有相变和层裂损伤物理信息的实验数据. 实验结果显示, 在加载段锡依次经历了弹塑性转变和β-γ相变两种物理过程, 屈服强度约0.194 GPa, 相变压力随着锡厚度的增加从7.54 GPa减小到7.14 GPa. 在卸载段出现了明显的层裂损伤, 层裂强度约1.1 GPa, 与相同加载压力下冲击实验结果有巨大差异, 层裂片厚度约0.38 mm. 结合由锡的多相Helmholtz自由能计算的多相状态方程、Hayes相变动力学方程和损伤度理论, 对斜波压缩实验过程进行一维流体动力学数值模拟, 计算结果可以很好描述锡的弹塑性转变、相变和层裂三个物理过程.Abstract: Obtaining the dynamic response experimental data of tin under different thermodynamic paths is the basis for in-depth study of its phase transition and damage physical process. The ramp wave compression experiment of tin was carried out by using magnetic driving loading device CQ-4, and the dynamic response data of tin were obtained. The experimental results show that in the loading section, tin undergoes elastic-plastic transformation and β-γ phase transition. The yield strength is about 0.2 GPa, and the phase transition onset pressure decreases from 7.54 GPa to 7.14 GPa with the increase of tin thickness. There is obvious spallation damage in the unloading section. The spallation strength is about 1.1 GPa, which is greatly different from the impact test results under the same loading pressure. The thickness of the spallation is about 0.38 mm. Combined with the multiphase equation of state based on Helmholtz free energy, nonequilibrium phase strain rate model and damage evolution equation, the experimental dynamic process is numerically simulated. The calculation results can well describe the three physical processes of elastic-plastic transformation, phase transition and spallation.
-
Key words:
- phase transition /
- multiphase equation of state /
- spallation /
- damage degree /
- ramp wave loading
-
表 1 实验条件
Table 1. Experimental condition
Exp. no. Position Material Size/mm 1 Al 1.006 × 8.0 × 23.0 Tin Ф8.0 × 1.285 2 Al 1.005 × 8.0 × 23.0 shot714 Tin Ф8.0 × 1.551 3 Al 1.000 × 8.0 × 23.0 LiF Ф7.9 × 4.013 4 Al 0.998 × 8.0 × 23.0 Tin Ф8.0 × 1.873 表 2 速度波剖面上的特征值
Table 2. The typical characteristic physical variables in the wave profiles
1.285 mm 1.551 mm 1.873 mm uEP/(m·s−1) 40.40 40.80 39.50 uPT/(m·s−1) 670.30 655.00 639.0 PPT /GPa 7.54 7.34 7.14 T/μs 0.28 0.29 0.29 Δu/(m·s−1) 120.09 134.21 119.21 σs/GPa 1.10 1.20 1.10 T02/μs 0.30 0.29 0.29 β γ VR/(m3·kg−1) 1.372×10−4 1.198×10−4 TR/K 298.15 298.15 PR/GPa 0.0 8.664 $ \varTheta ({V_R}) $/K 180.91 187.77 q1 1.6 1.38 BR/GPa 58.0 78.1 $B_R^{'} $ 2.8 3.2 Φ0(VR)/(J·kg−1) 0.0 8.49×104 Γ(VR)
/(J·kg−1·K−2)1.5×10−2 1.5×10−2 α 1.0 1.0 -
[1] Tonkov EY, Ponyatovsky EG . Phase Transformations of Elements Under High Pressure. CRC Press, 2005 [2] Hayes DB. Kinetics of shock-induced polymorphic phase transitions//American Physical Society Meeting, Stanford, CA, USA, 20 Dec. 1976 [3] Barnett JD, Bean VE, Hall HT. X-Ray diffraction studies on Tin to 100 kilobars. Journal of Applied Physics, 1966, 37(2): 875-877 doi: 10.1063/1.1708275 [4] Desgreniers S, Vohra YK, Ruoff AL. Tin at high pressure: An energy dispersive X-Ray diffraction study to 120 GPa. Physical Review B, 1989, 39(14): 10359-10361 doi: 10.1103/PhysRevB.39.10359 [5] Ming L, Liu LG. Compressions and phase transitions of tin to half a megabar. High Temperatures-High Pressures, 1986, 18: 79-85 [6] Martinez, E. Sound Velocity Doppler Laser Interferometry Measurements on Tin. American Institute of Physics, 2002: 1200-1203 [7] Corkill JL, Garca A, Cohen ML. Theoretical study of high-pressure phases of tin. Physical Review B Condensed Matter, 1991, 43(11): 9251 doi: 10.1103/PhysRevB.43.9251 [8] Christensen NE, Methfessel M. Density-functional calculations of the structural properties of tin under pressure. Physical Review B, 1993, 48(9): 5797-5807 doi: 10.1103/PhysRevB.48.5797 [9] Ravelo R, Baskes M. Equilibrium and thermodynamic properties of grey, white, and liquid Tin. Physical Review Letters, 1997, 79(13): 2482-2485 doi: 10.1103/PhysRevLett.79.2482 [10] Andrés A. First-principles study of elastic properties and pressure-induced phase transitions of Sn: LDA versus GGA results. Physical Review B, 2003, 67(21): 212104 doi: 10.1103/PhysRevB.67.212104 [11] Yu C, Liu J, Hao L, et al. Ab initio calculation of the properties and pressure induced transition of Sn. Solid State Communications, 2006, 140(11-12): 538-543 doi: 10.1016/j.ssc.2006.09.026 [12] Cui SX, Cai LC, Feng WX, et al. First-principles study of phase transition of tin and lead under high pressure. Physica Status Solidi, 2008, 245(1): 53-57 doi: 10.1002/pssb.200743240 [13] Anderson WW, Cverna F, Hixson RS, et al. Phase Transition and Spall Behavior in β-Tin. American Institute of Physics, 2000 [14] Mabire C, Héreil PL. Shock induced polymorphic transition and melting of tin up to 53 GPa (experimental study and modelling)//AIP Conference Proceedings. American Institute of Physics, 2000 [15] Stager RA, Balchan AS, Drickamer HG. High-pressure phase transition in metallic Tin. Journal of Chemical Physics, 1962, 37(5): 1154-1154 [16] Vaboya SN, Kennedy GC. Compressibility of 18 metals to 45 kbar. Journal of Physics & Chemistry of Solids, 1970, 31(10): 2329-2345 [17] Ohtani A, Mizukami S, Katayama M, et al. Multi-anvil apparatus for high pressure X-ray diffraction. Japanese Journal of Applied Physics, 1977, 16(10): 1843-1848 doi: 10.1143/JJAP.16.1843 [18] Davis J, Hayes DB. Isentropic compression experiments on dynamic solidification in tin. Journal of Membrane Science, 2004, 476(1): 20-29 [19] Hayes DB. Wave propagation in a condensed medium with N transforming phases: Application to solid-solidI-liquid bismuth. Journal of Applied Physics, 1975, 46(8): 3438-3443 [20] 种涛, 赵剑衡, 谭福利等. 斜波压缩下锡的相变动力学特性. 高压物理学报, 2020, 34(1): 9 (Chong Tao, Zhao Jianheng, Tan Fuli, et al. Dynamic characteristics of phase transition of Tin under ramp wave loading. Chinese Journal of High Pressure Physics, 2020, 34(1): 9 (in Chinese) [21] 种涛. 斜波加载下铋, 锡等典型金属材料的相变动力学研究. [博士论文]. 合肥: 中国科学技术大学, 2018Chong Tao. Study on kinetics of phase transition of metals under ramp wave loading. [PhD Thesis]. Hefei: University of Science and Technology of China, 2018 (in Chinese) [22] Cox GA. A Multi-Phase Equation of State and Strength Model for Tin. American Institute of Physics, 2006 [23] Buy F, Voltz C, Llorca F. Thermodynamically Based Equation of State for Shock Wave Studies: Application to the Design of Experiments on Tin. American Institute of Physics, 2006 [24] Khishchenko KV. Equation of state and phase diagram of tin at high pressures. Journal of Physics Conference, 2008, 121(2): 022025 doi: 10.1088/1742-6596/121/2/022025 [25] 张林, 李英华, 李雪梅等. 锡的β和γ两相物态方程//第六届全国爆炸力学实验技术学术会议论文集. 中国力学学会, 2010: 301-307Zhang Lin, Li Yinghua, Li Xuemei, et al. National Academic Conference on Experimental Technology of Explosion Mechanics. 2010: 301-307 (in Chinese) [26] Song HF, Liu HF, Zhang GC, et al. Numerical simulation of wave propagation and phase transition of Tin under shock-wave loading. Chinese Physics Letters, 2009, 26(6): 4 [27] 种涛, 王桂吉, 谭福利等. 磁驱动准等熵压缩下铁的相变. 中国科学: 物理学力学天文学, 2014, 44(6): 630-636Chong Tao, Wang Guiji, Tan Fuli, et al. Phase transition of iron under magnetically driven quasiisentropic compression. Sci. Sin-Phys. Mech. Astron. 2014, 44(6): 630-636 (in Chinese) [28] Wang GJ, Luo BQ, Zhang XP, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading. Review of Scientific Instruments, 2013, 84(1): 1163 [29] Hall CA, Asay JR, Knudson MD, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading. Review of Entific Instruments, 2001, 72(9): 3587-3595 doi: 10.1063/1.1394178 [30] Steinberg DJ. Livermore. California: Lawrence Livermore National Laboratory, 1996 [31] Kanel GI, Razorenov SV, Utkin AV, et al. The spall strength of metals at elevated temperatures. American Institute of Physics, 1996, 370: 503-506 [32] 袁福平. 复合应力波的传播特性和工程效应研究. [硕士论文]. 合肥: 中国科学技术大学, 2002Yuan Fuping. [Master Thesis]. Hefei: University of Science and Technology of China, 2002 (in Chinese) [33] Martinez, E. Sound velocity doppler laser interferometry measurements on Tin. AIP Conference Proceedings, 2002, 620(1): 1200-1200 [34] Marsh SP. LASL Shock Hugoniot Data. University of California: Berkeley, 1980: 141 [35] Cavaleri ME, Plymate TG, Stout JH. A pressure-volume-temperature equation of state for Sn(β) by energy dispersive X-ray diffraction in a heated diamond-anvil cell. Journal of Physics and Chemistry of Solids, 1988, 49(8): 945-956 doi: 10.1016/0022-3697(88)90012-1 [36] Plymate TG, Stout JH, Cavaleri ME. Pressure-volume-temperature behavior and heterogeneous equilibria of the non-quenchable body-centered tetragonal polymorph of metallic tin. Journal of Physics and Chemistry of Solids, 1988, 49(11): 1339-1348 doi: 10.1016/0022-3697(88)90217-X [37] Steinberg DJ, Cochran SG, Guinan MW. A constitutive model for metals applicable at high-strain rate Dynamic constitutive response of tantalum at high strain rates A constitutive model for metals applicable at high-strain rate. Journal of Applied Physics, 1980, 51(3): 1498 doi: 10.1063/1.327799 [38] 谭华. 实验冲击波物理. 北京: 国防工业出版社, 2018: 27-28Tan Hua. Experimental Shock Wave Physics. Beijing: National Defense Industry Press, 2018: 27-28 (in Chinese) -