EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含节理岩体爆破过程中应力波传播与裂纹扩展的数值研究

周文海 胡才智 包娟 郑俊杰 梁瑞

周文海, 胡才智, 包娟, 郑俊杰, 梁瑞. 含节理岩体爆破过程中应力波传播与裂纹扩展的数值研究. 力学学报, 2022, 54(9): 1-12 doi: 10.6052/0459-1879-22-237
引用本文: 周文海, 胡才智, 包娟, 郑俊杰, 梁瑞. 含节理岩体爆破过程中应力波传播与裂纹扩展的数值研究. 力学学报, 2022, 54(9): 1-12 doi: 10.6052/0459-1879-22-237
Zhou Wenhai, Hu Caizhi, Bao Juan, Zheng Junjie, Liang Rui. Numerical study on crack propagation and stress wave propagation during blasting of jointed rock mass. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 1-12 doi: 10.6052/0459-1879-22-237
Citation: Zhou Wenhai, Hu Caizhi, Bao Juan, Zheng Junjie, Liang Rui. Numerical study on crack propagation and stress wave propagation during blasting of jointed rock mass. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 1-12 doi: 10.6052/0459-1879-22-237

含节理岩体爆破过程中应力波传播与裂纹扩展的数值研究

doi: 10.6052/0459-1879-22-237
基金项目: 国家自然科学基金(51566010),甘肃省自然科学基金(B061709)资助项目
详细信息
    作者简介:

    梁瑞, 教授, 主要研究方向: 岩土爆破安全. E-mail: liangr@lut.cn

  • 中图分类号: TU45

NUMERICAL STUDY ON CRACK PROPAGATION AND STRESS WAVE PROPAGATION DURING BLASTING OF JOINTED ROCK MASS

  • 摘要: 岩体中存在着大量自然形成的节理, 这些节理导致岩体的力学性质、振动、渗透、能量传递等多种性能发生改变. 爆炸应力波在含节理岩体中的传播与衰减也随着发生改变, 进而影响工程爆破的效果及安全性. 对含节理岩体的爆生裂纹扩展与爆炸应力波传播规律进行研究, 通过建立含节理岩体的爆炸数值模型得到节理两侧岩体的有效应力和振动速度, 并利用应力波的波动理论与能量密度理论计算出节理的透反射系数和透反射能量比. 在此基础上研究节理几何参数(节理填充物厚度D、爆源到节理的法向距离R、爆源到节理的竖向距离H、节理倾角$ \theta $)对含节理岩体爆生裂纹扩展的影响以及上述参数与节理的透反射系数和透反射能量比关系. 结果表明当节理位于裂纹区且爆源到节理的竖向距离H与法向距离R之比H/R = 1时, 节理的反射系数及反射能量比处于最大值, 切应力成为此范围内影响节理面损伤的主要因素; 节理近爆侧岩体的破碎区域面积与节理填充物厚度D成正相关; 节理近爆侧岩体的破碎区域面积与爆源到节理的法向距离R和爆源到节理的竖向距离H成负相关; 当节理位于裂纹区时, 节理对岩体的爆破碎岩效果影响最大.

     

  • 图  1  入射P波穿透节理示意图

    Figure  1.  Incident P-wave penetration diagram

    图  2  不同爆源到节理的法向距离R的透反射系数

    Figure  2.  Transmission and reflection coefficients of different normal distances R from blast sources to joints

    图  3  不同H/R下的透反射系数

    Figure  3.  Transmission and reflection coefficient at different H/R

    图  4  不同节理倾角θ的透反射系数

    Figure  4.  Transmission and reflection coefficients of different joint inclination angles θ

    图  5  节理填充物厚度D对透反射能量比的影响

    Figure  5.  Influence of joint filler thickness D on energy ratio of transmission and reflection

    图  6  爆源到节理法向距离R对透反射能量比的影响

    Figure  6.  Influence of the normal distance R from the blast source to the joint on the energy ratio of transmission and reflection

    图  7  H/R对透反射能量比的影响

    Figure  7.  The energy ratio of transmission and reflection under different H/R

    图  8  不同几何参数下含节理岩体的爆生裂纹扩展图

    Figure  8.  Fracture propagation diagram of rock mass with joint under different geometric parameters

    表  1  模型$ {\rm I} $的信息表

    Table  1.   Information of Model $ {\rm I} $

    ParameterExplosion modelMonitoring unit locationD
    R4r
    下载: 导出CSV

    表  5  炸药物理参数[19]

    Table  5.   Mechanical parameters of explosive[19]

    Material$ \rho /\left( {{\text{g}} \cdot {\text{c}}{{\text{m}}^{ - 3}}} \right) $$ A/{\text{GPa}} $$ B/{\text{GPa}} $$ {R_1} $$ {R_2} $$ \omega $$ {E_0}/{\text{GPa}} $$ V/{\text{c}}{{\text{m}}^3} $
    Explosive1.7821418.24.110.354.191
    下载: 导出CSV

    表  6  岩石物理参数[19]

    Table  6.   Mechanical parameters of rock[19]

    Material$ \rho /\left( {{\text{g}} \cdot {\text{c}}{{\text{m}}^{ - 3}}} \right) $$ {E_0}{\kern 1 pt} {\kern 1 pt} /{\text{GPa}} $$ \mu $$ \sigma {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} /{\text{GPa}} $$ {E_{\tan }} $$ \beta $CP
    Rock2.73580.2280.50.020.52.633.96
    下载: 导出CSV

    表  7  节理物理参数[19]

    Table  7.   Mechanical parameters of joint[19]

    Material$ \rho /\left( {{\text{g}} \cdot {\text{c}}{{\text{m}}^{ - 3}}} \right) $$ {E_0}{\kern 1 pt} {\kern 1 pt} /{\text{GPa}} $$ \mu $$ \sigma {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} /{\text{GPa}} $$ {E_{\tan }} $$ \beta $
    Joints2.20280.2410.250.0250.5
    下载: 导出CSV

    表  2  模型$ {\rm I}{\rm I} $的信息表

    Table  2.   Information of Model $ {\rm I}{\rm I} $

    ParameterExplosion modelMonitoring unit locationR
    D0.2r
    下载: 导出CSV

    表  3  模型$ {\rm I}{\rm I}{\rm I} $的信息表

    Table  3.   Information of Model $ {\rm I}{\rm I}{\rm I} $

    ParameterExplosion modelMonitoring unit locationD
    0.2r0.4r0.8r
    R4r
    8r
    16r
    注: (1)另取R = 0, D = 0的不含节理的爆炸模型作为空白对照组.
    下载: 导出CSV

    表  4  模型$ {\rm I}{\text{V}} $的信息表

    Table  4.   Information of Model $ {\rm I}{\text{V}} $

    ParameterExplosion modelMonitoring unit location$ \theta $
    R8r
    下载: 导出CSV

    表  8  模型I、模型II、模型III和模型IV的裂纹扩展应力云图表

    Table  8.   Fracture propagation stress nephogram chart for model I, model II, model III and model IV

    Timet = 2.38 mst = 5.56 mst = 10.09 ms
    Model I
    Model II
    Model III
    Model IV
    Model without joint
    下载: 导出CSV
  • [1] 夏文俊, 卢文波, 陈明等. 白鹤滩坝址柱状节理玄武岩爆破损伤质点峰值振速安全阈值研究[J]. 岩石力学与工程报, 2019, 38(S1): 2997-3007

    Xia Wenjun, Lu Wenbo, Chen Ming, et al. Study on safety threshold of peak particle velocity about blasting damage of columnar jointed basalt rock mass in Baihetan Dam site. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2997-3007(in Chinese))
    [2] Varma M, Maji VB, Boominathan A. Influence of rock joints on longitudinal wave velocity using experimental and numerical techniques. International Journal of Rock Mechanics and Mining Sciences, 2021, 141: 104699 doi: 10.1016/j.ijrmms.2021.104699
    [3] Wang ZL, Konietzky H. Modelling of blast-induced fractures in jointed rock masses. Engineering Fracture Mechanics, 2009, 76(12): 1945-1955 doi: 10.1016/j.engfracmech.2009.05.004
    [4] Yang P, Lei QH, Xiang JH, et al. Numerical simulation of blasting in confined fractured rocks using an immersed-body fluid-solid interaction model. Tunnelling and Underground Space Technology, 2020, 98: 103352 doi: 10.1016/j.tust.2020.103352
    [5] Wang ZL, Wang HC, Wang JG, et al. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks. Computers and Geotechnics, 2021, 135: 104172 doi: 10.1016/j.compgeo.2021.104172
    [6] Zhu JB, Zhao XB, Li JC, et al. Normally incident wave propagation across a joint set with the virtual wave. Journal of Applied Geophysics, 2011, 73(3): 283-288 doi: 10.1016/j.jappgeo.2011.01.012
    [7] Do TN, Wu JH. Verifying discontinuous deformation analysis simulations of the jointed rock mass behavior of shallow twin mountain tunnels. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 104322 doi: 10.1016/j.ijrmms.2020.104322
    [8] Zhao J, Cai JG. Transmission of elastic P-wave across single fracture with a nonlinear normal deformation behavior. Rock Mechanics and Rock Engineering, 2001, 34(1): 3-22 doi: 10.1007/s006030170023
    [9] Lu WB, Yang JH, Yan P, et al. Dynamic response of rock mass induced by the transient release of in-situ stress. International Journal of Rock Mechanics and Mining Sciences, 2012, 53: 129-141 doi: 10.1016/j.ijrmms.2012.05.001
    [10] 楼晓明, 周文海, 简文彬等. 岩石破碎机理的微差爆破最佳延时控制. 哈尔滨工业大学学报, 2017, 49(02): 158-163

    Lou Xiaoming, Zhou Wenhai, Jian Wenbin, et al. Millisecond blasting optimal time delay control based on rock breaking mechanism. Journal of Harbin Institute of Technology, 2017, 49(02): 158-163(in Chinese))
    [11] Gu BL, Suárez‐Rivera R , Nihei KT, et al. Incidence of plane waves upon a fracture. Journal of Geophysical Research Solid Earth, 1996, 101(B11)
    [12] 鞠杨, 李业学, 谢和平等. 节理岩石的应力波动与能量耗散. 岩石力学与工程学报, 2006(12): 2426-2434 doi: 10.3321/j.issn:1000-6915.2006.12.007

    Ju Yang, Li Yexue, Xie Heping, et al. Stress wave propagation and energy dissipation in jointed Rocks. Chinese Journal of Rock Mechanics and Engineering, 2006(12): 2426-2434(in Chinese)) doi: 10.3321/j.issn:1000-6915.2006.12.007
    [13] 柴少波, 李建春, 赵均海等. P波在非线性交叉节理岩体中的传播特性研究. 岩石力学与工程学报, 2019, 38(06): 1149-1157 doi: 10.13722/j.cnki.jrme.2018.1085

    Chai Shaobo, Li Jianchun, Zhao Junhai, et al. Study on stress P-wave propagation across intersecting rock joints with nonlinear deformation. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(06): 1149-1157(in Chinese)) doi: 10.13722/j.cnki.jrme.2018.1085
    [14] 汪书敏, 王志亮, 贾帅龙等. 黏弹性节理岩体中应力波的传播特性分析. 哈尔滨工业大学学报, 2022, 54(2): 99-107

    Wang Shumin, Wang Zhiliang, Jia Shuailong, et al. Analysis of propagation characteristics of stress waves in viscoelastic jointed rock mass. Journal of Harbin Institute of Technology, 2022, 54(2): 99-107 (in Chinese))
    [15] Li JC, Ma GW. Analysis of blast wave interaction with a rock joint. Rock Mechanics and Rock Engineering, 2010, 43(6): 777-787 doi: 10.1007/s00603-009-0062-0
    [16] Miller RK. An approximate method of analysis of the transmission of elastic waves through a frictional boundary. Journal of Applied Mechanics, 1977, 44(4): 652-656 doi: 10.1115/1.3424152
    [17] 王举, 杨风威, 唐旭. 地震荷载作用下含节理岩质边坡的破坏机理. 水利与建筑工程学报, 2017, 15(05): 171-177 doi: 10.3969/j.issn.1672-1144.2017.05.031

    Wang Ju, Yang Fengwei, Tang Xu. Failure Mechanism of Rock Slope with Joint Under the Seismic Load. Journal of Water Resources and Architectural Engineering, 2017, 15(05): 171-177(in Chinese)) doi: 10.3969/j.issn.1672-1144.2017.05.031
    [18] 谢冰, 李海波, 王长柏等. 节理几何特征对预裂爆破效果影响的数值模拟. 岩土力学, 2011, 32(12): 3812-3820 doi: 10.3969/j.issn.1000-7598.2011.12.044

    Xie Bing, Li Haibin, Wang Changbai, et al. Numerical simulation of presplit blasting influenced by geometrical characteristics of joints. Rock and Soil Mechanics, 2011, 32(12): 3812-3820(in Chinese)) doi: 10.3969/j.issn.1000-7598.2011.12.044
    [19] 孙宁新, 雷明锋, 张运良等. 软弱夹层对爆炸应力波传播过程的影响研究. 振动与冲击, 2020, 39(16): 112-119 + 147 doi: 10.3969/j.issn.1000-3835.2014.02.005

    Sun Ningxin, Lei Mingfeng, Zhang Yunliang, et al. A study on the influence of weak inter-layer on the propagation process of explosion stress wave. Journal of Vibration and Shock, 2014, 31(02): 26-31.15(in Chinese)) doi: 10.3969/j.issn.1000-3835.2014.02.005
    [20] 朱亮, 陈明, 卢文波等. 轮廓爆破下柱状节理岩体开裂过程的数值模拟. 爆炸与冲击, 2015, 35(04): 555-560 doi: 10.11883/1001-1455(2015)04-0555-06

    Zhu Liang, Chen Ming, Lu Wenbo, et al. Numerical simulation on the cracking process of columnar jointed rock masses in contour blasting. Explosion and Shock Waves, 2015, 35(04): 555-560(in Chinese)) doi: 10.11883/1001-1455(2015)04-0555-06
    [21] 刘婷婷, 李新平, 李海波等. 应力波在充填节理岩体中传播规律的数值研究. 岩石力学与工程学报, 2016, 35(S2): 3552-3560

    Liu Tintin, Li Xinping, Li Haibo, et al. Numerical study on wave propagation across filled joints. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3552-3560(in Chinese))
    [22] 璩世杰, 刘际飞. 节理角度对预裂爆破成缝效果的影响研究. 岩土力学, 2015, 36(01): 189-194 + 204

    Qu Shijie, Liu Jifei. Numerical analysis of joint angle effect on cracking with presplit blasting. Rock and Soil Mechanics, 2015, 36(01): 189-194 + 204(in Chinese))
    [23] 魏晨慧, 朱万成, 白羽等. 不同节理角度和地应力条件下岩石双孔爆破的数值模拟. 力学学报, 2016, 48(04): 926-935 doi: 10.6052/0459-1879-15-259

    Wei Chenhui, Zhu Wancheng, Bai Yu, et al. Numerical simulation two-hole blasting of rock under different joint angle and in-situ stress conditions. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(04): 926-935(in Chinese)) doi: 10.6052/0459-1879-15-259
    [24] 张奇. 应力波在节理处的传递过程. 岩土工程学报, 1986(06): 99-105 doi: 10.3321/j.issn:1000-4548.1986.06.011

    Zhang Qi. The transfer process of stress wave at joint. Chinese Journal of Geotechnical Engineering, 1986(06): 99-105(in Chinese)) doi: 10.3321/j.issn:1000-4548.1986.06.011
    [25] 冷振东, 卢文波, 陈明等. 岩石钻孔爆破粉碎区计算模型的改进. 爆炸与冲击, 2015, 35(01): 101-107 doi: 10.11883/1001-1455(2015)01-0101-07

    Leng Zhendon, Lu Wenbo, Chen Min, et al. Improved calculation model for the size of crushed zone around blasthole. Explosion and Shock Waves, 2015, 35(01): 101-107. (in Chinese)) doi: 10.11883/1001-1455(2015)01-0101-07
    [26] Liu L, Katsabanis PD. Development of a continuum damage model for blasting analysis. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2): 217-231 doi: 10.1016/S0148-9062(96)00041-1
    [27] LS-DYNA Keyword User's Manual. California: Livemore Software Technology Corporation, 2003
    [28] 柴少波, 李建春, 李海波. 柱面波在节理岩体中的传播特性. 岩石力学与工程学报, 2014, 33(03): 523-530

    Cai SB, Li J, Li HB. Propagation characteristics of cylindrical wave in joint rock masses. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(03): 523-530(in Chinese))
    [29] 杨阳, 杨仁树, 王建国. 节理厚度对岩石动力特性影响的模拟试验[J]. 中国矿业大学学报, 2016, 45(02): 211-216 + 309

    Yang Yang, Yang Renshu, Wang Jianguo. Simulation material experiment on dynamic mechanical properties of jointed rock affected by joint thickness. Journal of China University of Mining & Technology, 2016, 45(02): 211-216 + 309(in Chinese))
    [30] 潘长春, 徐颖, 宗琦. 基于单孔爆破的节理裂隙减振模型试验研究[J]. 振动与冲击, 2017, 36(07): 255-261

    Pang Changchun, Xu Ying, Zong Qi. Test for vibration reduction model of joint fracture based on single-hole blasting. Journal of Vibration and shock, 2017, 36(07): 255-261(in Chinese))
    [31] Prasanth TK, Mittal S. Vortex-induced vibration of two circular cylinders at low Reynolds number. Journal of Fluids and Structures, 2009, 25(4): 731-741 doi: 10.1016/j.jfluidstructs.2008.12.002
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  15
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 录用日期:  2022-07-18
  • 网络出版日期:  2022-07-19

目录

    /

    返回文章
    返回