EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分布式合成双射流的飞行器无舵面三轴姿态控制飞行试验

赵志杰 罗振兵 刘杰夫 邓雄 彭文强 李石清

赵志杰, 罗振兵, 刘杰夫, 邓雄, 彭文强, 李石清. 基于分布式合成双射流的飞行器无舵面三轴姿态控制飞行试验. 力学学报, 2022, 54(5): 1220-1228 doi: 10.6052/0459-1879-21-586
引用本文: 赵志杰, 罗振兵, 刘杰夫, 邓雄, 彭文强, 李石清. 基于分布式合成双射流的飞行器无舵面三轴姿态控制飞行试验. 力学学报, 2022, 54(5): 1220-1228 doi: 10.6052/0459-1879-21-586
Zhao Zhijie, Luo Zhenbing, Liu Jiefu, Deng Xiong, Peng Wenqiang, Li Shiqing. Flight test of aircraft three-axis attitude control without rudders based on distributed dual synthetic jets. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1220-1228 doi: 10.6052/0459-1879-21-586
Citation: Zhao Zhijie, Luo Zhenbing, Liu Jiefu, Deng Xiong, Peng Wenqiang, Li Shiqing. Flight test of aircraft three-axis attitude control without rudders based on distributed dual synthetic jets. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1220-1228 doi: 10.6052/0459-1879-21-586

基于分布式合成双射流的飞行器无舵面三轴姿态控制飞行试验

doi: 10.6052/0459-1879-21-586
基金项目: 国家自然科学基金(11972369, 11872374, 52075538), 湖南省科技创新计划(2021RC3075)和国防科技大学青年科技创新奖(434517314)资助项目
详细信息
    作者简介:

    罗振兵, 教授, 主要研究方向: 主动流动控制技术. E-mail: luozhenbing@163.com

  • 中图分类号: V221.7

FLIGHT TEST OF AIRCRAFT THREE-AXIS ATTITUDE CONTROL WITHOUT RUDDERS BASED ON DISTRIBUTED DUAL SYNTHETIC JETS

  • 摘要: 将自主可控的合成双射流激励器集成于常规布局飞行器中, 进行了三轴无舵面控制飞行试验, 验证了分布式合成双射流对飞行器巡航时的无舵面姿态调控能力. 对合成双射流激励器进行改进, 设计了分布式三轴姿态控制合成双射流激励器, 滚转环量控制激励器分别安装于两侧机翼翼尖处后缘, 射流出口靠近压力面; 偏航反向合成双射流控制激励器分别安装于靠近两侧机翼翼尖20%弦长处, 上、下沿展向均匀布置; 俯仰环量控制激励器安装于V尾下的平尾后缘, 射流出口靠近压力面. 针对巡航速度为30 m/s的飞行器, 进行了三轴姿态控制飞行试验, 结果表明: 分布式合成双射流实现了飞行器巡航时的三轴无舵面姿态操控; 横航向控制存在耦合, 滚转环量控制激励器实现了飞行器的双向滚转操控, 能产生的最大滚转角速度达16.87°/s, 偏航反向合成双射流控制激励器实现了飞行器的双向偏航操控, 能产生的最大偏航角速度达9.09°/s; 俯仰环量控制激励器实现了飞行器的纵向控制, 能产生的最大俯仰角速度达7.68°/s.

     

  • 图  1  合成双射流激励器结构示意图

    Figure  1.  The structure diagram of DSJA

    图  2  滚转环量控制激励器结构示意图

    Figure  2.  Structure diagram of the roll CC actuator

    图  3  偏航反向DSJ控制激励器结构示意图

    Figure  3.  Structure diagram of the yaw reverse DSJ actuator

    图  4  俯仰环量控制激励器结构示意图

    Figure  4.  Structure diagram of the pitch CC actuator

    图  5  无人试飞平台

    Figure  5.  Unmanned flight test platform

    图  6  飞行航线

    Figure  6.  Flight route

    图  7  左侧滚转CC激励器控制前、后的飞行状态对比

    Figure  7.  Comparison of flight status before and after left-side CC

    图  8  左侧滚转CC激励器控制下的飞行姿态参数变化

    Figure  8.  Flight attitude parameter changing process under control of left-side CC

    图  9  右侧滚转CC激励器控制前、后的飞行状态对比

    Figure  9.  Comparison of flight status before and after right-side CC

    图  10  右侧滚转CC激励器控制下的飞行姿态参数变化

    Figure  10.  Flight attitude parameter changing process under control of right-side CC

    图  11  左侧反向DSJ激励器控制前、后的飞行状态对比

    Figure  11.  Comparison of flight status before and after left-side reverse DSJ

    图  12  左侧反向DSJ激励器控制下的飞行姿态参数变化

    Figure  12.  Flight attitude parameter changing process under control of left-side reverse DSJ

    图  13  右侧反向DSJ激励器控制前、后的飞行状态对比

    Figure  13.  Comparison of flight status before and after right-side reverse DSJ

    图  14  右侧反向DSJ激励器控制下的飞行姿态参数变化

    Figure  14.  Flight attitude parameter changing process under control of right-side reverse DSJ

    图  15  俯仰CC激励器控制前、后的飞行状态对比

    Figure  15.  Comparison of flight status before and after the pitch CC

    图  16  俯仰CC激励器控制下的飞行姿态参数变化

    Figure  16.  Flight attitude parameter changing process under control of pitch CC

    表  1  无人飞行平台具体尺寸

    Table  1.   Detailed size of UAV platform

    ParametersValues
    total weight/kg 18.9
    weight ratio of actuators/% 6.1
    span/mm 2400
    wing aera/m2 0.732
    leading edge sweep angle/(°) 4.1
    on-side length of roll actuators/mm 260 (65 × 4)
    on-side length of yaw actuators/mm 180 (60 × 3)
    length of pitch actuators/mm 476 (59.5 × 8)
    chord of wing roots/mm 370
    chord of wing tips/mm 240
    flight speed/(m·s−1) 30
    span of aileron/mm 345
    span of flat tail/mm 546
    chord of flat tail/mm 163
    下载: 导出CSV
  • [1] Zhao ZJ, Luo ZB, Xu B, et al. Novel lift enhancement method based on zero-mass-flux jets and its adaptive controlling laws design. Acta Mechanica Sinica, 2021, in press
    [2] 王磊, 杜海, 李秋实等. 环量控制机翼增升及滚转控制特性研究. 空气动力学学报, 2021, 39(1): 43-51 (Wang Lei, Du Hai, Li Qiushi, et al. Research on the lift-enhancement and roll control characteristics of a circulation control wing. Acta Aerodynamica Sinica, 2021, 39(1): 43-51 (in Chinese)
    [3] Friedman C, Arieli R, Levy Y. Lift build-up on circulation control airfoils. Journal of Aircraft, 2016, 53(1): 231-242 doi: 10.2514/1.C033304
    [4] Xu HY, Qiao CL, Yang HQ, et al. Active circulation control on the blunt trailing edge wind turbine airfoil. AIAA Journal, 2018, 56(2): 554-570 doi: 10.2514/1.J056223
    [5] Warsop C, Crowther WJ. Fluidic flow control effectors for flight control. AIAA Journal, 2018, 56(10): 3808-3824 doi: 10.2514/1.J056787
    [6] Hoholis G, Steijl R, Badcock K. Circulation control as a roll effector for unmanned combat aerial vehicles. Journal of Aircraft, 2016, 53(6): 1875-1889 doi: 10.2514/1.C033642
    [7] 曹永飞, 顾蕴松, 韩杰星. 流体推力矢量技术验证机研制及飞行试验研究. 空气动力学学报, 2019, 37(4): 593-599 (Cao Yongfei, Gu Yunsong, Han Jiexing. Development and flight testing of a fluidic thrust vectoring demonstrator. Acta Aerodynamica Sinica, 2019, 37(4): 593-599 (in Chinese) doi: 10.7638/kqdlxxb-2017.0202
    [8] Lee Y, Song M, Park S. Application of backstep Coanda flap for supersonic coflowing fluidic thrust-vector control. AIAA Journal, 2014, 52(10): 2355-2359 doi: 10.2514/1.J052971
    [9] Kowal HJ. Advances in thrust vectoring and the application of flow-control technology. Canadian Aeronautics & Space Journal, 2002, 48(2): 145-151
    [10] 林泳辰, 徐惊雷, 韩杰星等. 气动推力矢量无舵面飞翼的飞行实验. 航空动力学报, 2019, 34(3): 701-707 (Lin Yongchen, Xu Jinglei, Han Jiexing et al. Flight test of a fluidic thrust vectoring flying wing without rudder. Journal of Aerospace Power, 2019, 34(3): 701-707 (in Chinese)
    [11] Kim D, Kara K, Morris PJ. Flow-separation control using sweeping jet actuator. AIAA Journal, 2018, 56(11): 4604-4613 doi: 10.2514/1.J056715
    [12] Gildersleeve S, Amitay M. Control of flow separation over a flapped airfoil using low-aspect-ratio circular pins. AIAA Journal, 2019, 57(2): 628-640 doi: 10.2514/1.J056883
    [13] Desalvo ME, Glezer A. Aerodynamic performance modification at low angles of attack by trailing edge vortices. AIAA Paper, 2004-2118, 2004
    [14] Amitay M, Glezer A. Role of actuation frequency in controlled flow reattachment over a stalled airfoil. AIAA Journal, 2002, 40(2): 209-216 doi: 10.2514/2.1662
    [15] 许晓平, 周洲. 飞翼布局无人机流动分离控制及机理分析. 力学学报, 2014, 46(4): 497-504 (Xu Xiaoping, Zhou Zhou. Active separation control for the flying-wing UAV using synthetic jet. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 497-504 (in Chinese) doi: 10.6052/0459-1879-13-344
    [16] Fielding JP, Lawson CP, Rui MP, et al. Design, build and flight of the Demon demonstrator UAV. AIAA Paper, 2011-6963, 2011
    [17] Warsop C, Crowther WJ, Shearwood T. NATO AVT-239: Flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft. AIAA Paper, 2019-0282, 2019
    [18] Chen K, Shi ZW, Zhu JC, et al. Roll aerodynamic characteristic study of an unmanned aerial vehicle based on circulation control technology. Part G: Journal of Aerospace Engineering, 2019, 233(3): 871-882
    [19] Shi ZW, Zhu JC, Dai XX, et al. Aerodynamic characteristics and flight testing of a UAV without control surfaces based on circulation control. Journal of Aerospace Engineering, 2019, 32(1): 04018134 doi: 10.1061/(ASCE)AS.1943-5525.0000947
    [20] 孙全兵, 史志伟, 耿玺等. 基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制研究. 航空学报, 2021, 41(2): 190-199 (Sun Quanbing, Shi Zhiwei, Geng Xi, et al. Attitude control study of a flying wing aircraft without control surfaces based on active flow control. Acta Aeronautica et Astronautica Sinica, 2021, 41(2): 190-199 (in Chinese)
    [21] Smith BL, Glezer A. The formation and evolution of synthetic jets. Physics of Fluids, 1998, 10(9): 2281-2297 doi: 10.1063/1.869828
    [22] Glezer A, Amitay M. Synthetic jets. Annual Review of Fluid Mechanics, 2002, 34: 503-529 doi: 10.1146/annurev.fluid.34.090501.094913
    [23] Amitay M, Cannelle F. Evolution of finite span synthetic jets. Physics of Fluids, 2006, 18(5): 54101 doi: 10.1063/1.2196093
    [24] Amitay M, Washburn AE, Anders SG, et al. Active flow control on the stingray uninhabited air vehicle: Transient behavior. AIAA Journal, 2004, 42(11): 2205-2215 doi: 10.2514/1.5697
    [25] Xu XP, Zhou Z. Study on longitudinal stability improvement of flying wing aircraft based on synthetic jet flow control. Aerospace Science and Technology, 2015, 46: 287-298 doi: 10.1016/j.ast.2015.07.022
    [26] Luo ZB, Xia ZX, Liu B. New generation of synthetic jet actuators. AIAA Journal, 2006, 44(10): 2418-2420 doi: 10.2514/1.20747
    [27] Luo ZB, Zhao ZJ, Liu JF, et al. Novel Roll effector based on zero-mass-flux dual synthetic jets and its flight test. Chinese Journal of Aeronautics, 2021, in press
    [28] 罗振兵, 赵志杰, 彭文强等. 一种双压电振子驱动的矢量射流装置. 发明专利, 专利申请号: 202110457017. X
    [29] Kim W, Kim C, Jung JK. Separation control characteristics of synthetic jets depending on exit con-figuration. AIAA Journal, 2012, 50(3): 559-570 doi: 10.2514/1.J051223
    [30] 赵志杰, 罗振兵, 刘杰夫等. 合成双射流逆向吹吸控制对翼型流动特性影响. 空气动力学学报, 2021, 39(6): 165-174 (Zhao Zhijie, Luo Zhenbing, Liu Jiefu, et al. Effect of reverse blowing and suction control by dual synthetic jets on airfoil flow characteristics. Acta Aerodynamica Sinica, 2021, 39(6): 165-174 (in Chinese) doi: 10.7638/kqdlxxb-2021.0213
    [31] Li SQ, Luo ZB, Deng X, et al. Lift enhancement based on virtual aerodynamic shape using a dual synthetic jet actuator. Chinese Journal of Aeronautics, 2021, in press
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  42
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 录用日期:  2022-03-07
  • 网络出版日期:  2022-03-08
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回