[1] | Shabana AA. Flexible multibody dynamics: Review of past and recent developments. Multibody System Dynamics, 1997,1(2):189-222 | [2] | Gerstmayr J, Sugiyama H, Mikkola A. A review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. Journal of Computational and Nonlinear Dynamics, 2013,8(3):031016 | [3] | Shabana AA. An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical Report. No. MBS96-1-UIC, 1996 | [4] | Tian Q, Chen LP, Zhang YQ. An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. Journal of Computational and Nonlinear Dynamic, 2009,4(2):0210091-02100914 | [5] | Lan P, Tian QL, Yu ZQ. A new absolute nodal coordinate formulation beam element with multilayer circular cross section. Acta Mechanica Sinica, 2020,36(1):82-96 | [6] | Sun JL, Tian Q, Hu HY, et al. Axially variable-length solid element of absolute nodal coordinate formulation. Acta Mechanica Sinica, 2019,35(3):653-663 | [7] | 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展. 力学学报, 2019,51(6):1565-1586 | [7] | ( Sun Jialiang, Tian Qiang, Hu Haiyan. Advances in dynamic modeling and optimization of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1565-1586 (in Chinese)) | [8] | 王光远. 论不确定性结构力学的发展. 力学进展, 2005,35(3):338-344 | [8] | ( Wang Guangyuan. On the development of uncertain structural mechanics. Advances in Mechanics, 2005,35(3):338-344 (in Chinese)) | [9] | Wu JL, Zhang YQ. The dynamic analysis of multibody systems with uncertain parameters using interval method. Applied Mechanics & Materials, 2012, 152-154:1555-1561 | [10] | 赵宽, 陈建军, 阎彬 等. 含随机参数的多体系统动力学分析. 力学学报, 2012,44(4):802-806 | [10] | ( Zhao Kuan, Chen Jianjun, Yan Bin, et al. Dynamic analysis of multibody systems with probabilistic parameters. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(4):802-806 (in Chinese)) | [11] | Wang Z, Tian Q, Hu HY. Dynamics of spatial rigid-flexible multibody systems with uncertain interval parameters. Nonlinear Dynamics, 2016,84(2):527-548 | [12] | Paez TL, Red-Horse J. Structural dynamics challenge problem: Summary. Computer Methods in Applied Mechanics and Engineering, 2008,197(29):2660-2665 | [13] | Liu GP, Luo R, Liu S. A new interval multi-objective optimization method for uncertain problems with dependent interval variables. International Journal of Computational Methods, 2020: 2050007 | [14] | Mo J, Wang L, Qiu ZP, et al. A nonprobabilistic structural damage identification approach based on orthogonal polynomial expansion and interval mathematics. Structural Control and Health Monitoring, 2019,26(8):1-22 | [15] | Fu CM, Liu YX, Xiao Z. Interval differential evolution with dimension-reduction interval analysis method for uncertain optimization problems. Applied Mathematical Modelling, 2019,69:441-452 | [16] | 熊芬芬, 杨树兴, 刘宇 等. 工程概率不确定分析方法. 北京: 科学出版社, 2015 | [16] | ( Xiong Fenfen, Yang Shuxing, Liu Yu, et al. Engineering Probabilistic Uncertainty Analysis Method. Beijing: Science Press, 2015 (in Chinese)) | [17] | Adhikari S, Khodaparast HH. A spectral approach for fuzzy uncertainty propagation in finite element analysis. Fuzzy Sets and Systems, 2014,243:1-24 | [18] | Sun L, Zheng ZW. Saturated adaptive hierarchical fuzzy attitude-tracking control of rigid spacecraft with modeling and measurement uncertainties. IEEE Transactions on Industrial Electronics, 2019,66(5):3742-3751 | [19] | Zhang HY, Meng DY, Wang J, et al. Synchronisation of uncertain chaotic systems via fuzzy-regulated adaptive optimal control approach. International Journal of Systems Science, 2020,51(3):473-487 | [20] | Huber PJ. Robust Statistical Procedures, 2nd ed. Philadelphia, PA: SIAM, 1996 | [21] | George SF. Monte Carlo. New York: Springer, 1996 | [22] | Luo YF, Bai HY, Hsu D, et al. Importance Sampling for Online Planning under Uncertainty. The International Journal of Robotics Research, 2018,38(2-3):162-181 | [23] | 王馨月, 景丽萍. 基于分层抽样的不均衡数据集成分类. 深圳大学学报(理工版), 2019,36(1):24-32 | [23] | ( Wang Xinyue, Jing Liping. Stratified sampling based ensemble classification for imbalanced data. Journal of Shenzhen University (Science and Engineering), 2019,36(1):24-32 (in Chinese)) | [24] | Donovan D, Burrage K, Burrage P, et al. Estimates of the coverage of parameter space by Latin Hypercube and Orthogonal Array-based sampling. Applied Mathematical Modelling, 2017,57:553-564 | [25] | Shi X, Yan H, Wang JX, et al. An efficient adaptive importance sampling method for SRAM and analog yield analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020: 1-1 | [26] | Kriegesmann B, Lüdeker JK. Robust compliance topology optimization using the first-order second-moment method. Structural and Multidiplinary Optimization, 2019,60(1):269-286 | [27] | Zhao W, Chen YY, Liu JK. An effective first order reliability method based on Barzilai-Borwein step. Applied Mathematical Modelling, 2020,77(2):1545-1563 | [28] | Armen DK, Taleen D. Multiple design points in first and second-order reliability. Structural Safety, 1998,20(1):37-49 | [29] | Lee SH, Chen W. A comparative study of uncertainty propagation methods for Black-box type functions. Structural Multidisciplinary Optimization, 2008,37(3):39-253 | [30] | Ping MH, Han X, Jiang C, et al. A frequency domain reliability analysis method for electromagnetic problems based on univariate dimension reduction method. Science China Technological Sciences, 2019,62(5):787-798 | [31] | He WX, Zeng Y, Li G. A novel structural reliability analysis method via improved maximum entropy method based on nonlinear mapping and sparse grid numerical integration. Mechanical Systems and Signal Processing, 2019,133:106247 | [32] | Wang K, Chen F, Yu JY, et al. Nested sparse-grid stochastic collocation method for uncertainty quantification of blade stagger angle. Energy, 2020,201:117583 | [33] | Schneider F, Papaioannou I, Ehre M, et al. Polynomial chaos based rational approximation in linear structural dynamics with parameter uncertainties. Computers & Structure, 2020,233:106223 | [34] | 许灿, 朱平, 刘钊 等. 平纹机织碳纤维复合材料的多尺度随机力学性能预测研究. 力学学报, 2020,52(3):763-773 | [34] | ( Xu Can, Zhu Ping, Liu Zhao, et al. Research on multiscale stochastic mechanical properties prediction of plain woven carbon fiber composites. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):763-773 (in Chinese)) | [35] | Son J, Du YC. Comparison of intrusive and nonintrusive polynomial chaos expansion-based approaches for high dimensional parametric uncertainty quantification and propagation. Computers & Chemical Engineering, 2020,134:106685 | [36] | Benedict E, Bastian R, Felix G, et al. Non-intrusive uncertainty quantification in the simulation of turbulent spray combustion using polynomial chaos expansion: A case study. Combustion and Flame, 2020,213:26-38 | [37] | Sandu A, Sandu C, Ahmadian M. Modeling multibody systems with uncertainties. Part I: Theoretical and computational aspects. Multibody System Dynamics, 2006,15(4):369-391 | [38] | Sandu C, Sandu A, Ahmadian M. Modeling multibody systems with uncertainties. Part II: Numerical applications. Multibody System Dynamics, 2006,15(3):241-262 | [39] | Acharjee S, Zabaras N. A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes. Computers & Structures, 2007,85(5):244-254 | [40] | 黄斌, 贺志赟, 张衡. 随机桁架结构几何非线性问题的混合摄动-伽辽金法求解. 力学学报, 2019,51(5):1424-1436 | [40] | ( Huang Bin, He Zhiyun, Zhang Heng. Hybrid perturbation-Galerkin method for geometrical nonlinear analysis of truss structures with random parameters. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1424-1436 (in Chinese)) | [41] | Isukapalli SS. Uncertainty analysis of transport-transformation models. [PhD Thesis]. New Jersey: Rutgers, The State University of New Jersey, 1999 | [42] | Atkinson KE. An Introduction to Numerical Analysis. New York: John Wiley & Sons, 1989 | [43] | 靳红玲. 不确定性结构的动力学分析. [博士论文]. 西安: 西安电子科技大学, 2014 | [43] | ( Jin Hongling. Dynamics Analysis for Uncertain Structures. [PhD Thesis]. Xi'an: Xidian University, 2014 (in Chinese)) | [44] | 皮霆, 张云清, 吴景铼. 基于多项式混沌方法的柔性多体系统不确定性分析. 中国机械工程, 2011,22(29):2341-2348 | [44] | ( Pi Ting, Zhang Yunqing, Wu Jinglai. Uncertainty analysis of flexible multibody systems using polynomial chaos methods. China Mechanical Engineering, 2011,22(29):2341-2348 (in Chinese)) | [45] | Krylov VI, Stroud AH. Approximate calculation of multiple integrals. Dover: Dover Publications, 2006 | [46] | 刘铖. 基于绝对坐标描述的柔性空间结构展开动力学研究. [博士论文]. 北京: 北京理工大学, 2013 | [46] | ( Liu Cheng. Deployment dynamics of flexible space structures described by absolute-coordinate-based method. [PhD Thesis]. Beijing: Beijing Institute of Technology, 2013 (in Chinese)) | [47] | Tatang MA. Direct incorporation of uncertainty in chemical and environmental engineering systems. [PhD Thesis]. Cambridge: Massachusetts Institute of Technology, 1995 | [48] | Garcia-Vallejo D, Escalona JL, Mayo J, et al. Describing rigid-flexible multibody systems using absolute coordinates. Nonlinear Dynamics, 2003,34(1):75-94 | [49] | Shabana AA, Yakoub RY. Three dimensional absolute nodal coordinate formulation for beam elements: Theory. Journal of Mechanical Design, 2001,123(4):606-613 |
|