EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

梯级溃坝洪水洪峰增强机制

黄灿 刘青泉 王晓亮

黄灿, 刘青泉, 王晓亮. 梯级溃坝洪水洪峰增强机制[J]. 力学学报, 2020, 52(3): 645-655. doi: 10.6052/0459-1879-20-044
引用本文: 黄灿, 刘青泉, 王晓亮. 梯级溃坝洪水洪峰增强机制[J]. 力学学报, 2020, 52(3): 645-655. doi: 10.6052/0459-1879-20-044
Huang Can, Liu Qingquan, Wang Xiaoliang. MECHANISM OF PEAK DISCHARGE ENHANCEMENT OF CASCADE DAM BREAK FLOODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 645-655. doi: 10.6052/0459-1879-20-044
Citation: Huang Can, Liu Qingquan, Wang Xiaoliang. MECHANISM OF PEAK DISCHARGE ENHANCEMENT OF CASCADE DAM BREAK FLOODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 645-655. doi: 10.6052/0459-1879-20-044

梯级溃坝洪水洪峰增强机制

doi: 10.6052/0459-1879-20-044
基金项目: 1)国家自然科学基金(11872117, 11602278), 重点研发项目(2018YFC1505504)和北京理工大学青年教师学术启动计划资助项目
详细信息
    通讯作者:

    2)王晓亮, 特别副研究员, 主要研究方向: 环境流体力学和颗粒物质力学. E-mail: wangxiaoliang36@bit.edu.cn

  • 中图分类号: O352,TV87,X43

MECHANISM OF PEAK DISCHARGE ENHANCEMENT OF CASCADE DAM BREAK FLOODS

  • 摘要: 我国在多条河流上修建了大量梯级水库, 梯级坝溃决诱发洪水大大超过单坝溃决洪水洪峰, 因此亟需加深对梯级坝溃决洪水洪峰增强机制的认识. 本文建立了梯级坝溃决洪水演进过程的一维浅水动力学模型, 发展了一套能捕捉激波、干湿边界和保平衡结构的数值求解方法, 通过大量算例, 系统研究了梯级坝溃决洪水演进过程的质量转化和能量转化机制. 研究结果表明, 梯级溃决中, 上游溃决诱发的洪水大大增大下游水库的质量和动量, 形成一个带动量的水塔, 同时在尾部残留一个动量较大的射流, 不断补充下游坝体溃决后水塔的质量和动量, 持续维持洪峰高度. 根据该射流-水塔机制, 建立了梯级坝溃决洪水演进过程对应的射流-水塔单坝溃决洪水过程等效模型, 该等效模型基本反映了梯级坝溃决诱发洪水的洪峰过程, 并成功预测了多个坝间距为百公里量级的梯级坝溃决洪水洪峰高程和流量, 可望为流域防洪和梯级坝设计提供理论依据.

     

  • 水利部. 中国水利统计年鉴2017. 北京: 中国水利水电出版社, 2017: 29-34
    (Ministry of Water Resources. China Water Statistical Conservancy Statistical Yearbook 2017. Beijing: Hydropower and Electrical Press, 2017: 29-34 (in Chinese))
    周新春, 许银山, 冯宝飞. 长江上游干流梯级水库群防洪库容互用性初探. 水科学进展, 2017, 28(3): 421-428
    (Zhou Xinchun, Xu Yinshan, Feng Baofei.An exploration on the interoperability of the flood control capacities of cascade reservoir groups in the upper reaches of Yangtze River. Advances in Water Science, 2017, 28(3): 421-428 (in Chinese))
    冯文凯, 张国强, 白慧林等. 金沙江"10·11" 白格特大型滑坡形成机制及发展趋势初步分析. 工程地质学报, 2019, 27(2): 415-425
    (Feng Wenkai, Zhang Guoqiang, Bai Huilin, et al.A preliminary analysis on the formation mechanism and development tendency of the huge Baige landslide in Jinsha River on October 11, 2018. Journal of Engineering Geology, 2019, 27(2): 415-425 (in Chinese))
    Xue Y, Xu W, Luo S, et al.Experimental study of dam-break flow in cascade reservoirs with steep bottom slope. Journal of Hydrodynamics, Ser. B, 2011, 23(4): 491-497
    Niu Z, Xu W, Li N, et al.Experimental investigation of the failure of cascade landslide dams. Journal of Hydrodynamics, Ser. B, 2012, 24(3): 430-441
    Chen HY, Xu WL, Deng J, et al.Experimental investigation of pressure load exerted on a downstream dam by dam-break flow. Journal of Hydraulic Engineering, 2013, 140(2): 199-207
    赵雪莹, 王昭升, 盛金保. 梯级水库溃坝洪水模拟. 人民长江, 2017, 48(11): 32-35
    (Zhao Xueying, Wang Zhaosheng, Sheng Jinbao.Simulation of dam-break flood for cascade reservoirs. Yangtze River, 2017, 48(11): 32-35 (in Chinese))
    贺同坤, 梁忠民, 程莉等. 梯级水库群系统洪水演进模拟及防洪安全评估. 水利水电技术, 2018, 49(3): 33-38
    (He Tongkun, Liang Zhongmin, Cheng Li, et al.Flood routing simulation and flood control safety assessment on cascade reservoir group system. Water Resources and Hydropower Engineering, 2018, 49(3): 33-38 (in Chinese))
    刘庆红, 付湘, 何海源等. 梯级水库群洪水溃坝模拟. 中国农村水利水电, 2011(3): 173-177
    (Liu Qinhong, Fu Xiang, He Haiyuan, et al.Simulation of dam break flood for cascade reservior. China Rural Water and Hydropower, 2011(3): 173-177 (in Chinese))
    黄卫, 曹志先. 梯级大坝溃决洪水渐进增强机制数值模拟. 武汉大学学报: 工学版, 2014, 47(2): 160-164
    (Huang Wei, Cao Zhixian.Numerical simulation of flood reinforcement due to cascade dam break. Engineering Journal of Wuhan University, 2014, 47(2): 160-164 (in Chinese))
    Cao Z, Huang W, Pender G, et al.Even more destructive: cascade dam break floods. Journal of Flood Risk Management, 2014, 7(4): 357-373
    Wang J, Liang D, Zhang J, et al.Comparison between shallow water and Boussinesq models for predicting cascading dam-break flows. Natural Hazards, 2016, 83(1): 327-343
    Zhou Z, Wang X, Chen W, et al.Numerical simulation of dam-break flooding of cascade reservoirs. Transactions of Tianjin University, 2017, 23(6): 570-581
    Luo J, Xu W, Tian Z, et al.Numerical simulation of cascaded dam-break flow in downstream reservoir//Proceedings of the Institution of Civil Engineers-Water Management. Thomas Telford Ltd, 2017, 172(2): 55-67
    李仟. 梯级土石坝连溃数值模拟. [硕士论文]. 郑州: 郑州大学, 2017
    (Li Qian.Numerical simulation of cascade earth-rock dam breach. [Master Thesis]. Zhengzhou: Zhengzhou University, 2017 (in Chinese))
    袁岳. 连锁溃坝水流特性模拟研究. [硕士论文]. 淮南: 安徽理工大学, 2016
    (Yuan Yue.Simulation study to flow characteristics of chain dam break. [Master Thesis]. Huainan: Anhui University of Science & Technology, 2016 (in Chinese))
    赵丹. 不同工况下梯级土石坝溃决模型对比研究. 水利规划与设计, 2018(3): 74-78
    (Zhao Dan.Comparative study of cascade dam embankment burst model under different conditions. Water Resources Planning and Design, 2018(3): 74-78 (in Chinese))
    陈淑婧. 梯级土石坝连溃洪水计算模型及小岗剑堰塞湖反演分析. [博士论文]. 中国水利水电科学研究院, 2018
    (Evaluation on cascade dam breach flood: Analytical model and case studies on Xiaogangjian barrier lakes. [PhD Thesis]. Beijing: China Institute of Water Resources and Hydropower Research, 2018 (in Chinese))
    吴强. 土石坝漫顶溃决过程的水土耦合动力学模型研究. [博士论文]. 北京:中国科学院大学, 2015
    (Wu Qiang.Soil-water coupling dynamics model for breaching of earth dam after overtopping. [PhD Thesis]. Beijing: University of Chinese Academy of Sciences, 2015 (in Chinese))
    岳志远, 曹志先, 闫军. 滑坡体溃决洪水数学模型研究. 水动力学研究与进展(A 辑), 2008, 23(5): 492-500
    (Yue Zhiyuan, Cao Zhixian, Yan Jun.Numerical modeling of breach of landslide dams. Chinese Journal of Hydrodynamics(Ser. A), 2008, 23(5): 492-500 (in Chinese))
    岳志远. 自然坝体溃决机理与水沙动力学过程. [博士论文]. 武汉: 武汉大学, 2010
    (Yue Zhiyuan.Mechanism and hydrodynamic process of natural dam failure. [PhD Thesis]. Wuhan: Wuhan University, 2010 (in Chinese))
    李志晶, 曹志先, 胡鹏等. 风沙与水沙运动多重时间尺度与深度积分模式. 力学学报, 2013, 45(2): 158-163
    (Li Zhijing, Cao Zhixian, Hu Peng, et al.Multiple time scales and depth integral model of wind sand and water sand movement. Chinese Journal of Theoretical and Applied, 2013, 45(2): 158-163 (in Chinese))
    Toro EF.Shock-capturing Methods for Free-surface Shallow Flows. West Sussex: John Wiley, 2001
    Tan WY.Shallow Water Hydrodynamics: Mathematical Theory and Numerical Solution for a Two-dimensional System of Shallow-water Equations. Beijing: Water & Power Press. Amsterdam: Elsevier, 1992
    杨秋足, 徐绯, 王璐等.一种基于黎曼解处理大密度比多相流 SPH 的改进算法. 2019, 51(3): 730-742
    (Yang Qiuzu, Xu Fei, Wang Lu, et al.An improved SPH algorithm for large density ratios multiphase flows based on Riemann solution. Chinese Journal of Theoretical and Applied, 2019, 51(3): 730-742 (in Chinese))
    王年华, 李明, 张来平. 非结构网格二阶有限体积法中黏性通量离散格式精度分析与改进. 力学学报, 2018, 50(3): 527-537
    (Wang Nianhua, Li Ming, Zhang Laiping.Accuracy analysis and improvement of viscous flux schemes in unstructured second-order finite-volume discretization. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 527-537 (in Chinese))
    邵帅, 李明, 王年华等. 基于非结构/混合网格模拟黏性流的高阶精度 DDG/FV 混合方法. 力学学报, 2018, 50(6): 1470-1482
    (Shao Shuai, Li Ming, Wang Nianhua, et al.High-order DDG/FV hybrid method for viscous flow simulation on unstructured/hybrid grids. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1470-1482 (in Chinese))
    Kurganov A, Tadmor E.New high-resolution central schemes for nonlinear conservation laws and convection--diffusion equations. Journal of Computational Physics, 2000, 160(1): 241-282
    Kurganov A, Levy D.Central-upwind schemes for the Saint-Venant system. ESAIM: Mathematical Modelling and Numerical Analysis, 2002, 36(3): 397-425
    Kurganov A, Petrova G.A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Communications in Mathematical Sciences, 2007, 5(1): 133-160
    Audusse E, Bouchut F, Bristeau MO, et al.A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on Scientific Computing, 2004, 25(6): 2050-2065
    Bouchut F.Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws a Well-Balanced Schemes for Sources. New York: Springer Science & Business Media, 2004
    Toro EF.Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. New York: Springer Science & Business Media, 2013
    LeVeque RJ. Finite Volume Methods for Hyperbolic Problems. Cambridge: Cambridge University Press, 2002
    Billingham J, King AC. Wave Motion.Cambridge: Cambridge University Press, 2000
  • 加载中
计量
  • 文章访问数:  832
  • HTML全文浏览量:  112
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-15
  • 刊出日期:  2020-06-10

目录

    /

    返回文章
    返回