EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗糙床面物质交换特性及其主导机制实验研究

樊靖郁 陈春燕 赵亮 王道增

樊靖郁, 陈春燕, 赵亮, 王道增. 粗糙床面物质交换特性及其主导机制实验研究[J]. 力学学报, 2020, 52(3): 673-679. doi: 10.6052/0459-1879-20-037
引用本文: 樊靖郁, 陈春燕, 赵亮, 王道增. 粗糙床面物质交换特性及其主导机制实验研究[J]. 力学学报, 2020, 52(3): 673-679. doi: 10.6052/0459-1879-20-037
Fan Jingyu, Chen Chunyan, Zhao Liang, Wang Daozeng. EXPERIMENTAL STUDY ON INTERFACIAL MASS EXCHANGE PROCESS AND ITS DOMINANT MECHANISM FOR ROUGH BED[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 673-679. doi: 10.6052/0459-1879-20-037
Citation: Fan Jingyu, Chen Chunyan, Zhao Liang, Wang Daozeng. EXPERIMENTAL STUDY ON INTERFACIAL MASS EXCHANGE PROCESS AND ITS DOMINANT MECHANISM FOR ROUGH BED[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 673-679. doi: 10.6052/0459-1879-20-037

粗糙床面物质交换特性及其主导机制实验研究

doi: 10.6052/0459-1879-20-037
基金项目: 1)国家自然科学基金资助项目(11472168)
详细信息
    通讯作者:

    2)樊靖郁,副研究员,主要研究方向:环境流体力学、水动力学和实验流体力学. E-mail:jyfan@shu.edu.cn

  • 中图分类号: O352

EXPERIMENTAL STUDY ON INTERFACIAL MASS EXCHANGE PROCESS AND ITS DOMINANT MECHANISM FOR ROUGH BED

  • 摘要: 粗糙底床泥-水界面区域的物质交换过程不仅与水动力作用有关,还涉及到底床物理特性和床面形态的影响. 为研究粗糙底床渗透率和床面微地形对泥-水界面物质交换过程的综合影响,通过实验室环形水槽实验,测量得到不同砂质平整底床和存在离散粗糙元床面条件下,泥-水界面物质交换通量和有效扩散系数的定量数据和变化特征,并采用参数化方法分析无量纲控制参数变化范围内界面物质交换特性的主导机制. 实验结果表明,粗糙底床渗透率和床面微地形共同对泥-水界面物质交换过程起重要作用. 与平整底床相比,离散粗糙元局部绕流结构驱动的附加泵吸交换不同程度增大了界面物质交换通量,其增强效应与底床渗透率和床面粗糙度的变化密切相关. 随底床渗透率和床面粗糙度的增大,有效扩散系数总体呈增大趋势,湍流渗透对界面物质交换的影响趋于增强,而泵吸交换的相对贡献趋于减弱. 因此,分析存在床面微地形粗糙底床的主导界面物质交换机制,需要考虑底床渗透率和床面粗糙度的综合影响.

     

  • Han X, Fang HW, He GJ, et al.Effects of roughness and permeability on solute transfer at the sediment water interface. Water Research, 2018, 129: 39-50
    Inoue T, Nakamura Y.Effects of hydrodynamic conditions on DO transfer at a rough sediment surface. Journal of Environmental Engineering, 2011, 137(1): 28-37
    Stoesser T, Nikora VI.Flow structure over square bars at intermediate submergence: Large eddy simulation study of bar spacing effect. Acta Geophysica, 2008, 56(3): 876-893
    Chen X, Cardenas MB, Chen L.Three-dimensional versus two-dimensional bed form-induced hyporheic exchange. Water Resources Research, 2015, 51(4): 2923-2936
    陈孝兵,赵坚,李英玉等. 床面形态驱动下潜流交换试验. 水科学进展,2014, 25(6): 835-841
    (Chen Xiaobing, Zhao Jian, Li Yingyu, et al.Experimental study of bedform-driven hyporheic exchange. Advances in Water Science, 2014, 25(6): 835-841 (in Chinese))
    Fox A, Boano F, Arnon S.Impact of losing and graining streamflow conditions on hyporheic exchange fluxes induced by dune-shaped bed forms. Water Resources Research, 2014, 50(3): 1895-1907
    崔光耀,潘翀,高琪等. 沟槽方向对湍流边界层流动结构影响的实验研究. 力学学报,2017,49(6): 1201-1212
    (Cui Guangyao, Pan Chong, Gao Qi, et al.Flow structure in the turbulent boundary layer over directional riblets surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1201-1212 (in Chinese))
    郑艺君,李庆祥,潘明等. 多孔介质壁面剪切湍流速度时空关联的研究. 力学学报, 2016, 48(6): 1308-1318
    (Zheng Yijun, Li Qingxiang, Pan Ming, et al.Space-time correlations of fluctuating veloctuating in porous wall-bounded turbulent shear flows. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1308-1318 (in Chinese))
    Elliott AH, Brooks NH.Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resources Research, 1997, 33(1): 123-136
    Huettel M, Røy H, Precht E, et al.Hydrodynamical impact on bigeochemical processes in aquatic sediments. Hydrobiologia, 2003, 494(1-3): 231-236
    Marzadri A, Tonina D, Bellin A, et al.Mixing interfaces, fluxes, residence times and redox conditions of the hyporheic zones induced by dune-like bedforms and ambient groundwater flow. Advances in Water Resources, 2016, 88: 139-151
    Voermans JJ, Ghisalberti M, Ivey GN.A model for mass transport across the sediment-water interface. Water Resources Research, 2018, 54(4): 2799-2812
    金光球,魏杰,张向洋等. 平原河流水沙界面生源物质迁移转化过程及水环境调控的研究进展. 水科学进展,2019,30(3): 434-444
    (Jin Guangqiu, Wei Jie, Zhang Xiangyang, et al.Advances in biogenic elements transport at the interface of stream-streambed and water environmental control in the plain river. Advances in Water Science, 2019, 30(3): 434-444 (in Chinese))
    Fries JS.Predicting interfacial diffusion coefficients for fluxes across the sediment-water interface. Journal of Hydraulic Engineering, 2007, 133(3): 267-272
    陈洁,许海,詹旭等. 湖泊沉积物-水界面磷的迁移转化机制与定量研究方法. 湖泊科学,2019, 31(4): 907-918
    (Chen Jie, Xu Hai, Zhan Xu, et al.Mechanisms and research methods of phosphorus migration and transformation across sediment-water interface. Journal of Lake Sciences, 2019, 31(4): 907-918 (in Chinese))
    O'Connor BL, Harvey JW. Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems. Water Resources Research, 2008, 44(12): 681-687
    Feng ZG, Michaelides EE.Secondary flow within a river and contaminant transport. Environmental Fluid Mechanics, 2009, 9(6): 617-634
    Jin G, Tang H, Li L, et al.Hyporheic flow under periodic bed forms influenced by low-density gradients. Geophysical Research Letters, 2011, 38(22): 1402-1416
    Cooper JR, Ockleford A, Rice SP, et al.Does the permeability of gravel river beds affect near-bed hydrodynamics. Earth Surface Processes and Landforms, 2018, 43(5): 943-955
    Cardenas MB, Wilson JL.Hydrodynamics of coupled flow above and below a sediment-water interface with triangular bedforms. Advances in Water Resources, 2007, 30(3): 301-313
    Fan JY, Wang DZ.Experimental investigation on diffusive contaminant release from permeable sediment layer under unidirectional unsteady flow. Journal of Hydrodynamics, 2014, 26(6): 965-970
    Voermans JJ, Ghisalberti M, Ivey GN.The variation of flow and turbulence across the sediment-water interface. Journal of Fluid Mechanics, 2017, 824: 413-437
    Grant SB, Stewardson MJ, Marusic I.Effective diffusivity and mass flux across the sediment-water interface in streams. Water Resources Research, 2012, 48(5): W05548
    Suga K, Matsumura Y, Ashitaka Y, et al.Effects of wall permeability on turbulence. International Journal of Heat & Fluid Flow, 2010, 31(6): 974-984
    Fang HW, Han X, He JJ, et al.Influence of permeable beds on hydraulically macro-rough flow. Journal of Fluid Mechanics, 2018, 847: 552-590
    Grant SB, Gomez-Velez JD, Ghisalberti M.Modeling the effects of turbulence on hyporheic exchange and local-to-global nutrient processing in streams. Water Resources Research, 2018, 54(9): 5883-5889
    Packman AI, Salehin M, Zaramella M.Hyporheic exchange with gravel beds: Basic hydrodynamic interactions and bedform-induced advective flows. Journal of Hydraulic Engineering, 2004, 130(7): 647-656
    Reidenbach MA, Limm M, Hondzo M, et al.Effects of bed roughness on boundary layer mixing and mass flux across the sediment-water interface. Water Resources Research, 2010, 46(7): 58-72
    Packman AI, Salehin M.Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange. Hydrobiologia, 2003, 494(1-3): 291-297
    Chandler ID, Guymer I, Pearson JM, et al.Vertical variation of mixing within porous sediment beds below turbulent flows. Water Resources Research, 2016, 52(5): 3493-3509
    Sinha S, Hardy RJ, Blois G, et al.A numerical investigation into the importance of bed permeability on determining flow structures over river dunes. Water Resources Research, 2017, 53(4): 3067-3086
    王道增,周旭,朱红伟等. 再悬浮底泥污染物在水体中的分层释放特征. 水动力学研究与进展,2014, 29(5): 592-598
    (Wang Daozeng, Zhou Xu, Zhu Hongwei, et al.Stratified release characteristics of sediments contaminants during re-suspension in water column. Chinese Journal of Hydrodynamics, 2014, 29(5): 592-598 (in Chinese))
  • 加载中
计量
  • 文章访问数:  374
  • HTML全文浏览量:  40
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-13
  • 刊出日期:  2020-06-10

目录

    /

    返回文章
    返回