EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锆基非晶合金的动态弛豫机制和高温流变行为

郝奇 乔吉超 Jean-Marc Pelletier

郝奇, 乔吉超, Jean-Marc Pelletier. 锆基非晶合金的动态弛豫机制和高温流变行为[J]. 力学学报, 2020, 52(2): 360-368. doi: 10.6052/0459-1879-20-004
引用本文: 郝奇, 乔吉超, Jean-Marc Pelletier. 锆基非晶合金的动态弛豫机制和高温流变行为[J]. 力学学报, 2020, 52(2): 360-368. doi: 10.6052/0459-1879-20-004
Hao Qi, Qiao Jichao, Jean-Marc Pelletier. DYNAMIC RELAXATION CHARACTERISTICS AND HIGH TEMPERATURE FLOW BEHAVIOR OF ZR-BASED BULK METALLIC GLASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 360-368. doi: 10.6052/0459-1879-20-004
Citation: Hao Qi, Qiao Jichao, Jean-Marc Pelletier. DYNAMIC RELAXATION CHARACTERISTICS AND HIGH TEMPERATURE FLOW BEHAVIOR OF ZR-BASED BULK METALLIC GLASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 360-368. doi: 10.6052/0459-1879-20-004

锆基非晶合金的动态弛豫机制和高温流变行为

doi: 10.6052/0459-1879-20-004
基金项目: 1)国家自然科学基金(51971178);陕西省自然科学基金(2019JM-344);中央高校基本科研业务费专项资金(3102019ghxm007);中央高校基本科研业务费专项资金(3102017JC01003)
详细信息
    通讯作者:

    乔吉超

  • 中图分类号: O344.5,O344.4

DYNAMIC RELAXATION CHARACTERISTICS AND HIGH TEMPERATURE FLOW BEHAVIOR OF ZR-BASED BULK METALLIC GLASS

  • 摘要: 非晶合金的动态弛豫机制对于理解其塑性变形, 玻璃转变行为, 扩散机制以及晶化行为都至关重要. 非晶合金的力学性能与动态弛豫机制的本征关联是该领域当前重要科学问题之一. 本文借助于动态力学分析(DMA), 探索了Zr$_{50}$Cu$_{40}$Al$_{10}$块体非晶合金从室温到过冷液相区宽温度范围内的动态力学行为. 通过单轴拉伸实验, 研究了玻璃转变温度附近的高温流变行为. 基于准点缺陷理论(quasi-point defects theory), 对两种力学行为的适用性以及宏观力学行为变化过程中微观结构的演化规律进行描述. 研究结果表明, 准点缺陷理论可以很好地描述非晶合金损耗模量$\alpha$弛豫的主曲线. 基于非晶合金的内耗行为, 玻璃转变温度以下原子运动的激活能$U_\beta$为0.63 eV. 与准点缺陷浓度对应的关联因子$\chi $在玻璃转变温度以下约为0.38,而在玻璃转变温度以上则线性增大. Zr$_{50}$Cu$_{40}$Al$_{10}$块体非晶合金在玻璃转变温度附近, 随温度和应变速率的不同而在拉伸实验中显示出均匀的或不均匀的流变行为. 非晶合金的高温流变行为不仅可以通过扩展指数函数和自由体积理论来描述, 还可以通过基于微剪切畴(shear micro-domains, SMDs)的准点缺陷理论来描述.

     

  • [1] Wang WH . The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 2012,57(3):487-656
    [2] Long ZL, Chang CT, Ding YH , et al. Corrosion behavior of Fe-based ferromagnetic (Fe, Ni)-B-Si-Nb bulk glassy alloys in aqueous electrolytes. Journal of Non-Crystalline Solids, 2008,354(40):4609-4613
    [3] Qiao JC, Wang Q, Pelletier JM , et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019,104:250-329
    [4] 罗斌强, 赵剑衡, 谭福利 等. 预压下锆基块体非晶合金的热冲击变形与破坏. 力学学报, 2011,43(1):235-242
    [4] ( Luo Binqiang, Zhao Jianheng, Tan Fuli , et al. Deformation and fracture of Zr$_{51}$Ti$_{5}$Ni$_{10}$Cu$_{25}$Al$_{9}$ bulk metallic glass under rapid heating and pre-load. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(1):235-242 (in Chinese))
    [5] 汪卫华 . 非晶态物质的本质和特性. 物理学进展, 2013,33(5):4-178
    [5] ( Wang Weihua . The nature and properties of amorphous mater. Progress in Physics, 2013,33(5):4-178 (in Chinese))
    [6] 管鹏飞, 王兵, 吴义成 等. 不均匀性:非晶合金的灵魂. 物理学报, 2017,66(17):176112
    [6] ( Guan Pengfei, Wang Bing, Wu Yicheng , et al. Heterogeneity: The soul of metallic glasses. Acta Physica Sinica, 2017,66(17):176112 (in Chinese))
    [7] Ye JC, Lu J, Liu CT , et al. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nature Materials, 2010,9(8):619
    [8] Ichitsubo T, Matsubara E, Yamamoto T , et al. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses. Physical Review Letters, 2005,95(24):245501
    [9] Liu YH, Wang D, Nakajima K , et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Physical Review Letters, 2011,106(12):125504
    [10] 王云江, 魏丹, 韩懂 等. 非晶态固体的结构可以决定性能吗? 力学学报, 2020,52(2):303-317
    [10] ( Wang Yunjiang, Wei Dan, Han Dong , et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):303-317 (in Chinese))
    [11] Schuh CA, Hufnagel TC, Ramamurty U . Mechanical behavior of amorphous alloys. Acta Materialia, 2007,55(12):4067-4109
    [12] 史荣豪, 肖攀, 杨荣 . 基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测. 力学学报. 2020,52(2): doi: 10.6052/0459-1879-19-369
    [12] ( Shi Ronghao, Xiao Pan, Yang Rong . Prediction of Shear Transformation Zones in Metallic Glasses Based on Laplacian of Atomic Volume. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2): doi: 10.6052/0459-1879-19-369 (in Chinese))
    [13] Nagel C, R?tzke K, Schmidtke E , et al. Free-volume changes in the bulk metallic glass Zr$_{46.7}$Ti$_{8.3}$Cu$_{7.5}$Ni$_{10}$Be$_{27.5}$ and the undercooled liquid. Physical Review B, 1998,57(17):10224-10227
    [14] Jackle J . Models of the glass transition. Reports on Progress in Physics, 1986,49(2):171-231
    [15] Grest G, Cohen MH . Liquid-glass transition: Dependence of the glass transition on heating and cooling rates. Physical Review B, 1980,21(9):4113
    [16] Ngai KL . Correlation between the secondary $\beta $-relaxation time at $T_{\rm g}$ with the Kohlrausch exponent of the primary $\alpha $ relaxation or the fragility of glass-forming materials. Physical Review E, 1998,57(6):7346-7349
    [17] Cavaille JY, Perez J, Johari GP . Molecular theory for the rheology of glasses and polymers. Physical Review B, 1989,39(4):2411-2422
    [18] Yao ZF, Qiao JC, Pelletier JM , et al. Characterization and modeling of dynamic relaxation of a Zr-based bulk metallic glass. Journal of Alloys Compounds, 2017,690:212-220
    [19] Pelletier JM . Dynamic mechanical properties in a Zr$_{46.8}$Ti$_{13.8}$Cu$_{12.5}$Ni$_{10}$Be$_{27.5}$ bulk metallic glass. Journal of Alloys Compounds, 2005,393(1-2):223-230
    [20] Ngai K . Relaxation and diffusion in complex systems. Springer Science & Business Media, 2011
    [21] Debye P . Polar Molecules. New York: Chemical Catalog Company, 1929
    [22] Davidson DW, Cole RH . Dielectric relaxation in glycerol, propylene glycol, and n-propanol. The Journal of Chemical Physics, 1951,19(12):1484-1490
    [23] Perera D . Compilation of the fragility parameters for several glass-forming metallic alloys. Journal of Physics: Condensed Matter, 1999,11(19):3807
    [24] Gauthier C, David L, Ladouce L , et al. Nonlinear mechanical response of amorphous polymers below and through glass transition temperature. Journal of Applied Polymer Science, 1997,65(12):2517-2528
    [25] Pelletier JM, Van de Moortèle B, Lu I, . Viscoelasticity and viscosity of Pd-Ni-Cu-P bulk metallic glasses. Materials Science Engineering: A, 2002,336(1-2):190-195
    [26] Wang Q, Pelletier JM, Blandin JJ , et al. Mechanical properties over the glass transition of Zr$_{41.2}$Ti$_{13.8}$Cu$_{12.5}$Ni$_{10}$Be$_{22.5}$ bulk metallic glass. Journal of Non-Crystalline Solids, 2005,351(27):2224-2231
    [27] Demetriou MD, Johnson WL . Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1. Acta Materialia, 2004,52(12):3403-3412
    [28] Lu J, Ravichandran G, Johnson WL . Deformation behavior of the Zr$_{41.2}$Ti$_{13.8}$Cu$_{12.5}$Ni$_{10}$Be$_{22.5}$ bulk metallic glass over a wide range of strain-rates and temperatures. Acta Materialia, 2003,51(12):3429-3443
    [29] 王庆 . 大块非晶合金的力学行为及其微观机理研究. [博士论文]. 上海: 上海交通大学, 2006
    [29] ( Wang Qing . Study of the mechanical behavior and its mecahnism of bulk amorphous alloys. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2006 (in Chinese))
    [30] Spaepen F . A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977,25(4):407-415
    [31] Jiang MQ, Wilde G, Dai LH . Origin of stress overshoot in amorphous solids. Mechanics of Materials, 2015,81:72-83
    [32] Kawamura Y, Inoue A . Newtonian viscosity of supercooled liquid in a Pd40Ni40P20 metallic glass. Applied Physics Letters, 2000,77(8):1114-1116
    [33] Zhang C, Qiao JC, Pelletier JM , et al. Arrhenius activation of Zr$_{65}$Cu$_{18}$Ni$_{7}$Al$_{10}$ bulk metallic glass in the supercooled liquid region. Intermetallics, 2017,86:88-93
    [34] Kawamura Y, Nakamura T, Kato H , et al. Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses. Materials Science and Engineering: A, 2001, 304- 306:674-678
    [35] Bletry M, Guyot P, Blandin JJ , et al. Free volume model: High-temperature deformation of a Zr-based bulk metallic glass. Acta materialia, 2006,54(5):1257-1263
    [36] Spaepen F, Turnbull D . A mechanism for the flow and fracture of metallic glasses. Scripta Metallurgica, 1974,8(5):563-568
    [37] Argon A . Plastic deformation in metallic glasses. Acta Metallurgica, 1979,27(1):47-58
  • 加载中
计量
  • 文章访问数:  772
  • HTML全文浏览量:  39
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-06
  • 刊出日期:  2020-04-10

目录

    /

    返回文章
    返回