EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两空间耦合下齿轮传动系统多稳态特性研究

石建飞 苟向锋 朱凌云

石建飞, 苟向锋, 朱凌云. 两空间耦合下齿轮传动系统多稳态特性研究[J]. 力学学报, 2019, 51(5): 1489-1499. doi: 10.6052/0459-1879-19-093
引用本文: 石建飞, 苟向锋, 朱凌云. 两空间耦合下齿轮传动系统多稳态特性研究[J]. 力学学报, 2019, 51(5): 1489-1499. doi: 10.6052/0459-1879-19-093
Shi Jianfei, Gou Xiangfeng, Zhu Lingyun. RESEARCH ON MULTI-STABILITY CHARACTERISTICS OF GEAR TRANSMISSION SYSTEM WITH TWO-SPACE COUPLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1489-1499. doi: 10.6052/0459-1879-19-093
Citation: Shi Jianfei, Gou Xiangfeng, Zhu Lingyun. RESEARCH ON MULTI-STABILITY CHARACTERISTICS OF GEAR TRANSMISSION SYSTEM WITH TWO-SPACE COUPLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1489-1499. doi: 10.6052/0459-1879-19-093

两空间耦合下齿轮传动系统多稳态特性研究

doi: 10.6052/0459-1879-19-093
基金项目: 1)天津市自然科学基金项目(18JCYBJC88800);天津市高等学校创新团队培养计划项目资助(TD13-5037)
详细信息
    通讯作者:

    苟向锋

  • 中图分类号: O322,TH132.417

RESEARCH ON MULTI-STABILITY CHARACTERISTICS OF GEAR TRANSMISSION SYSTEM WITH TWO-SPACE COUPLING

  • 摘要: 通过将系统参数定义为参数变量, 构成参数空间,研究齿轮传动系统在参数空间和状态空间耦合下的非线性全局动力学特性,以及多参数、多初值和多稳态行为之间的关联特性.首先设计了一个两空间耦合下非线性系统多稳态行为的计算和辨识方法.其次,基于该方法并结合相图、Poincaré映射图、分岔图、最大Lyapunov指数、吸引域等,研究齿轮传动系统在不同参数平面上多稳态行为的存在区域和分布特性,以及多稳态行为在状态平面上的分布特性,揭示了参数平面和状态平面上系统可能隐藏的多稳态行为和分岔,并分析了多稳态行为的形成机理. 结果发现,两空间耦合下系统在参数平面上存在大量多稳态行为并呈"带状"分布, 状态平面上多稳态行为出现两种不同的侵蚀现象, 即内部侵蚀和边界侵蚀.分岔点或分岔曲线对初值的敏感性导致多稳态行为的出现.当齿侧间隙和误差波动在较小的范围内变化时,系统全局动力学特性受间隙和误差扰动的影响较小,受啮合频率的影响较大.两空间耦合下系统全局动力学特性变得丰富和复杂.

     

  • [1] Kahraman A, Singh R . Interactions between time-varying mesh stiffness and clearance nonlinearities in a geared system. Journal of Sound and Vibration, 1991,146:135-156
    [2] Liu F, Jiang H, Liu S , et al. Dynamic behavior analysis of spur gears with constant & variable excitations considering sliding friction influence. Journal of Mechanical Science & Technology, 2016,30(12):5363-5370
    [3] Yoon JY, Kim B . Gear rattle analysis of a torsional system with multi-staged clutch damper in a manual transmission under the wide open throttle condition. Journal of Mechanical Science and Technology, 2016,30(3):1003-1019
    [4] Wei S, Han QK, Dong XJ , et al. Dynamic response of a single-mesh gear system with periodic mesh stiffness and backlash nonlinearity under uncertainty. Nonlinear Dynamics, 2017,89(1):49-60
    [5] Saghafi A, Farshidianfar A . An analytical study of controlling chaotic dynamics in a spur gear system. Mechanism and Machine Theory, 2016,96:179-191
    [6] 陈思雨, 唐进元 . 间隙对含摩擦和时变刚度的齿轮系统动力学响应的影响. 机械工程学报, 2009,45(8):119-124
    [6] ( Chen Siyu, Tang Jinyuan . Effect of backlash on dynamics of spur gear pair system with friction and time-varying stiffness. Chinese Journal of Mechanical Engineering, 2009,45(8):119-124 (in Chinese))
    [7] Farshidianfar A, Saghafi A . Identification and control of chaos in nonlinear gear dynamic systems using Melnikov analysis. Physics Letters A, 2014,378(46):3457-3463
    [8] Kaslik E, Balint St . Bifurcation analysis for a two-dimensional delayed discrete-time Hopf field neural network. Chaos, Solitons and Fractals, 2007,34:1245-1253
    [9] Peng MS, Jiang ZH , Jiang, XX. Multi-stability and complex dynamics in a simple discrete economic model. Chaos Solitons and Fractals, 2009,41:671-687
    [10] Algaba A, Gamero E, Rodrguez AJ . A bifurcation analysis of a simple electronic circuit. Communications in Nonlinear Science and Numerical Simulation, 2005,10:169-178
    [11] Yi N, Zhang QL, Liu P , et al. Codimension-two bifurcations analysis and tracking control on a discrete epidemic model. Journal of Systems Science and Complexity, 2011,24:1033-1056
    [12] Luo GW, Shi YQ, Zhu XF , et al. Hunting patterns and bifurcation characteristics of a three-axle locomotive bogie system in the presence of the flange contact nonlinearity. International Journal of Mechanical Sciences, 2018,136:321-338
    [13] Luo GW, Lv XH, Zhu XF , et al. Diversity and transition characteristics of sticking and non-sticking periodic impact motions of periodically forced impact systems with large dissipation. Nonlinear Dynamics, 2018,1:1-33
    [14] 吕小红, 罗冠炜 . 冲击渐进振动系统相邻基本振动的转迁规律. 力学学报, 2017,49(5):1091-1102
    [14] ( Lü Xiaohong, Luo Guanwei . Transition law of adjacent fundamental motions in vibro-impact system eith progression. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1091-1102 (in Chinese))
    [15] 乐源 . 一类碰撞振动系统在内伊马克沙克--音叉分岔点附近的局部两参数动力学. 力学学报, 2016,48(1):163-172
    [15] ( Yue Yuan . Local dynamical behavior of two-parameter family near the neimark-sacker-pitchfork bifurcation point in a vibro-impact system. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(1):163-172 (in Chinese))
    [16] Shi JF, Zhang YL, Gou XF . Bifurcation and evolution of a forced and damped Duffing system in two-parameter plane. Nonlinear Dynamics, 2018,93:749-766
    [17] Mason JF, Piiroinen PT . Saddle-point solution and grazing bifurcation in an impacting system. Chaos, 2012,22(1):1-6
    [18] Mason JF, Piiroinen PT . The effect of codimension-two bifurcation on the global dynamics of a gear model. Journal on Applied Dynamical Systems, 2009,8(4):1694-1711
    [19] Xiang L, Gao N, Hu A . Dynamic analysis of a planetary gear system with multiple nonlinear parameters. Journal of Computational and Applied Mathematics, 2018,327:325-340
    [20] Gou X, Zhu L, Chen D . Bifurcation and chaos analysis of spur gear pair in two-parameter plane. Nonlinear Dynamics, 2015,79:2225-2235
    [21] 郜志英, 沈允文, 董海军 等. 齿轮系统参数平面内的分岔结构. 机械工程学报, 2006,42(4):68-72
    [21] ( Gao Zhiying, Shen Yunwen, Dong Haijun , et al. Bifurcation structure in parameter plane of gear system. Chinese Journal of Mechanical Engineering, 2006,42(4):68-72 (in Chinese))
    [22] 林何, 王三民, 董金城 . 并车螺旋锥齿轮传动动力学参数二维域界结构分析. 航空动力学报, 2017,32(8):2017-2024
    [22] ( Lin He, Wang Sanmin, Dong Jincheng . Two-dimensional domain structure of dynamical parameters of combining spiral gear transmission. Journal of Aerospace Power, 2017,32(8):2017-2024 (in Chinese))
    [23] 苟向锋, 陈代林 . 双参变量下齿轮--转子系统扭转振动特性分析. 工程力学. 2014,31(11):211-216
    [23] ( Gou Xiangfeng, Chen Dailin . Dynamic analysis on torsional vibration of gear-rotor system in two parameters plane. Engineering Mechanics, 2014,31(11):211-216 (in Chinese))
    [24] Guo Y, Parker RG . Dynamic Analysis of Planetary Gears With Bearing Clearance. Journal of Computational and Nonlinear Dynamics, 2012,7(4):04100201-04100215
    [25] Mason JF, Piiroinen PT, Wilson RE , et al. Basins of attraction in non-smooth models of gear rattle. International Journal of Bifurcation and Chaos, 2009,19:203-224
    [26] Li QH, Lu QS . Coexisting periodic orbits in vibro-impacting dynamical systems. Appl. Math. Mech., 2003,24:261-273
    [27] 夏雨, 毕勤胜, 罗超 等. 双频1: 2激励下修正蔡氏振子两尺度耦合行为. 力学学报, 2018,50(2):362-372
    [27] ( Xia Yu, Bi Qinsheng, Luo Chao , et al. Behaviors of modified Chua's oscillator two time scales under two excitatoins with frequency ratio at 1: 2. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):362-372 (in Chinese))
    [28] 陈振阳, 韩修静, 毕勤胜 . 离散达芬映射中由边界激变所诱发的复杂的张弛振荡. 力学学报, 2017,49(6):1380-1389
    [28] ( Chen Zhenyang, Han Xiujing, Bi Qinsheng . Complex relaxation oscillation triggered by boundary crisis in the discrete Duffing map. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1380-1389 (in Chinese))
    [29] Jafari S, Pham VT, Golpayegani SMRH , et al. The relationship between chaotic maps and some chaotic systems with hidden attractors. International Journal of Bifurcation and Chaos, 2016,26:650211
    [30] Zhao HT, Lin YP, Dai YX . Hopf bifurcation and hidden attractors of a delay-coupled Duffing oscillator. International Journal of Bifurcation and Chaos, 2015,25:1550162
    [31] Shi JF, Gou XF, Zhu LY . Bifurcation and erosion of safe basin for a spur gear system. International Journal of Bifurcation and Chaos, 2018,28(14):1830048301
  • 加载中
计量
  • 文章访问数:  1148
  • HTML全文浏览量:  170
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-15
  • 刊出日期:  2019-09-18

目录

    /

    返回文章
    返回