EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

显式模拟类橡胶材料Mullins效应滞回圈

王晓明 吴荣兴 肖衡

王晓明, 吴荣兴, 肖衡. 显式模拟类橡胶材料Mullins效应滞回圈[J]. 力学学报, 2019, 51(2): 484-493. doi: 10.6052/0459-1879-18-334
引用本文: 王晓明, 吴荣兴, 肖衡. 显式模拟类橡胶材料Mullins效应滞回圈[J]. 力学学报, 2019, 51(2): 484-493. doi: 10.6052/0459-1879-18-334
Xiaoming Wang, Rongxing Wu, Heng Xiao. EXPLICIT MODELING THE HYSTERESIS LOOPS OF THE MULLINS EFFECT FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 484-493. doi: 10.6052/0459-1879-18-334
Citation: Xiaoming Wang, Rongxing Wu, Heng Xiao. EXPLICIT MODELING THE HYSTERESIS LOOPS OF THE MULLINS EFFECT FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 484-493. doi: 10.6052/0459-1879-18-334

显式模拟类橡胶材料Mullins效应滞回圈

doi: 10.6052/0459-1879-18-334
基金项目: 宁波职业技术学院人才引进项目(RC201703)
详细信息
    作者简介:

    2) 王晓明, 讲师,主要研究方向:智能材料本构建模. E-mail: wangxiaoming.g@163.com

  • 中图分类号: O343,O345

EXPLICIT MODELING THE HYSTERESIS LOOPS OF THE MULLINS EFFECT FOR RUBBER-LIKE MATERIALS

  • 摘要: 通过显式、直接的方法提出一个多轴可压缩应变能函数,用来模拟类橡胶材料在加载——卸载作用下,由于Mullins效应而产生的应力——应变滞回圈. 本文的创新点在于将表征能量耗散的变量引入到应变能函数.新的弹性势具有以下两个特点:第一,在加载情况下,新引入的变量不会对弹性势产生任何影响,因此,只要给出合适的形函数显式表达,3个基准实验,包括单轴拉伸和压缩,等双轴拉伸和压缩,以及平面应变,都可精确模拟;第二,新引入的变量在卸载情况下将被激活.在不同的卸载应力下,变量将发生改变,从而影响弹性势,使其最终产生不同的应力——应变关系卸载曲线,与对应的加载曲线共同构成应力——应变滞回圈.通过对Mullins效应实验数据进行分析和研究,得出了卸载形函数在不同卸载应力下变化的规律,并预测不同卸载应力下的应力——应变关系.最后,我们将得到精确匹配实验数据的数值模拟结果,从而证明本文方法不仅可以精确匹配至少3个基准实验,还可以模拟和预测类橡胶材料在加载——卸载作用下由于Mullins效应而产生的滞回圈.

     

  • [1] Mullins L . Softening of rubber by deformation. Rubber Chemistry and Technology, 1969, 42(1):339-362
    [2] Mullins L . Effect of stretching on the properties of rubber. Rubber Chemistry and Technology, 1948,21(2):281-300
    [3] Mullins L . Permanent set in vulcanized rubber. Rubber Chemistryand Technology, 1949,22(4):1036-1044
    [4] Marckmann G, Verron E . Comparison of hyperelastic models for rubber-like materials. Rubber Chemistry and Technology, 2006,79(5):835-858
    [5] Boyce MC, Aruuda EM . Constitutive models of rubber elasticity: A review. Rubber Chemistry and Technology, 2000,73(3):504-523
    [6] Wang MC, Guth E . Statistical theory of networks of Non-Gaussianflexible chains. The Journal of Chemical Physics, 1952,20(7):1144-1157
    [7] Flory PJ . Network structure and the elastic properties of vulcanizedrubber. Chemical Reviews, 1944,35(1):51-75
    [8] Treloar LRG . Stress-strain data for vulcanised rubber under varioustypes of deformation. Trans Faraday Soc, 1944,40(4):59-70
    [9] Arrude EM, Boyce MC . A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech PhysSolids, 1993,41(2):389-412
    [10] Treloar LRG, Riding G . A Non-Gaussian theory for rubber in biaxial strain II: Optical properties. Proceedings of the Royal Society A, 1979,369(1737):281-293
    [11] Mooney M . A theory of large elastic deformation. Journal of Applied Physics, 1940,11(9):582-592
    [12] Rivlin RS . Large elastic deformations of isotropic materials II. Some uniqueness theorems for pure, homogeneous deformation. Philosophical Transactions of the Royal Society, 1948,240(822):491-508
    [13] Gent AN . A new constitutive relation for rubber. Rubber Chemistry and Technology, 2012,69(1):59-61
    [14] Yeoh OH . Characterization of elastic properties of carbon-black-filled rubber vulcanizats. Rubber Chemistry and Technology, 1990,63(5):792-805
    [15] Ogden RW . Large deformation isotropic elasticity on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc, 1972,326(1567):565-584
    [16] Khajehsaeid H, Arghavani J, Naghdabadi R , et al. A visco-hyperel-astic constitutive model for rubber-like materials: A rate-dependent relaxation time scheme. International Journal of Engineering Scien-ce, 2014,79(6):44-58
    [17] 黄小双, 彭雄奇, 张必超 . 帘线/橡胶复合材料各向异性黏——超弹性本构模型. 力学学报, 2016,48(1):140-145
    [17] ( Huang Xiaoshuang, Peng Xiongqi, Zhang Bichao . An anisotropic visco-hyperelastic constitutive model for cord-rubber composites. Chinese Journal of Theoretic-al and Applied Mechanics, 2016,48(1):140-145 (in Chinese))
    [18] 谈炳东, 许进升, 孙朝翔 等. 短纤维增强三元乙丙橡胶横观各向同性黏-超弹性本构模型. 力学学报, 2017,49(3):677-684
    [18] ( Tan Bingdong, Xu Jinsheng, Sun Chaoxiang , et al. A transversely isotropic visco-hyperelastic constitutive model for short fiber reinforced EPDM. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):677-684 (in Chinese))
    [19] 邹广平, 张冰, 唱忠良 等. 弹簧-金属丝网橡胶组合减振器迟滞力学模型及实验研究. 力学学报, 2018,50(5):1125-1134
    [19] ( Zou Guangping, Zhang Bing, Chang Zhongliang , et al. Hysteresis mechanical model and experimental study of spring metal-net rubber combination damper. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1125-1134 (in Chinese))
    [20] 王宝珍, 胡时胜 . 猪肝动态力学性能及本构模型研究. 力学学报, 2017,49(6):1399-1408
    [20] ( Wang Baozhen, Hu Shisheng . Research on dynamic mechanical response and constitutive model of porcine liver. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1399-1408 (in Chinese))
    [21] 谈炳东, 许进升, 贾云飞 等. 短纤维增强 EPDM 包覆薄膜超弹性本构模型. 力学学报, 2017,49(2):317-323
    [21] ( Tan Bingdong, Xu Jinsheng, Jia Yunfei , et al. Hyperelastic constitutive model for short fiber reinforced EPDM inhibitor film. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):317-323 (in Chinese))
    [22] Pierre G, Julie D, Bruno F . A review on the Mullins effect. European Polymer Journal, 2009,45(3):601-612
    [23] Simo JC . On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput Methods Appl Mech Engrg, 1987,60:153-173
    [24] Miehe C . Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials. European Journal of Mechanics A-Solids, 1995,14:697-720
    [25] Miehe C, Keck J . Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. Experiments, modeling and algorithmic implementation. Journal of Mechanics and physicals of Solids, 2000,48(2):323-365
    [26] Kaliske M, Nasdala L, Rothert H . On damage modeling for elastic and viscoelastic materials at large strain. Computer & Structures, 2001,79:2133-2141
    [27] Lin RC, Schomburg U . A finite elastic-viscoelastic-elastoplastic material low with damage: Theoretical and numerical aspects. Comput Methods Appl Mech Engrg, 2003,192:1591-1627
    [28] Mullins L, Tobin, NR . Theoretical model for the elastic behavior of filler reinforced vulcanized rubbers. Rubber Chemistry and Tech-nology, 1957,30(2):555-571
    [29] Qi HJ, Boyce MC . Constitutive model for stretch-induced softening of the stress-stretch behavior of elastomeric materials. Journal of Mechanics and Physicals of Solids, 2004,52(10):2187-2205
    [30] Chai AB, Verron E, Andriyana A , et al. Mullins effect in swollen rubber: Experimental investigation and constitutive modelling. Polymer Testing, 2013,32(4):748-759
    [31] Dorfmann A, Ogden RW . A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. International Journal of Solids and Structures, 2004,41(7):1855-1878
    [32] Merckel Y, Diani J , Brieu, et al. Constitutive modeling of the anisotropic behavior of Mullins softened filled rubbers. Mechanics of Materials, 2013,57(1):30-41
    [33] Xiao H . An explicit,direct approach to obtaining multiaxial elastic potentials which exactly match data of four benchmark tests for incompressible rubberlike materials-Part 1: Incompressible deformations. Acta Mechanica, 2012,223(9):2309-2063
    [34] Wang XM, Li H, Yin ZN , et al. Multiaxial strain energy functionsof rubberlike materials: An explicit approach based on polynomial interpolation. Rubber Chemistry and Technology, 2014,87(1):168-183
    [35] Xiao H, Ding XF, Cao J , et al. New multi-axial constitutive mod-dels for large elastic deformation behaviors of soft up to breaking. International Journal of Solids and Structures, 2017,109:123-130
    [36] Xiao H, Chen LS . Hencky's logarithmic strain and dual stress-strain and strain-stress relations isotropic finite hyperelasticity. International Journal of Solids and Structures, 2003,40(6):1455-1463
    [37] Treloar LGR. The physics of rubber elasticity. Oxford: Oxford University Press, 1975
    [38] Jones DF, Treloar LRG . The properties of rubber in pure homogeneous strain. Journal of Physics D Applied Physics, 2001,8(11):1285-1304
    [39] Yohsuke B, Urayama K, Takigawa T . Biaxial strain testing of extremely soft polymer gels. Soft Matter, 2011,7(6):2632-2638
    [40] Mullins L, Tobin NR . Theoretical model for the elastic behavior offiller-reinforced vulcanized rubbers. Rubber Chemistry and Technology, 1957,30(2):555-571
  • 加载中
计量
  • 文章访问数:  1453
  • HTML全文浏览量:  144
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-15
  • 刊出日期:  2019-03-18

目录

    /

    返回文章
    返回