EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维方腔介电液体电对流的数值模拟研究

吴健 张蒙齐 田方宝

吴健, 张蒙齐, 田方宝. 三维方腔介电液体电对流的数值模拟研究[J]. 力学学报, 2018, 50(6): 1458-1469. doi: 10.6052/0459-1879-18-301
引用本文: 吴健, 张蒙齐, 田方宝. 三维方腔介电液体电对流的数值模拟研究[J]. 力学学报, 2018, 50(6): 1458-1469. doi: 10.6052/0459-1879-18-301
Wu Jian, Zhang Mengqi, Tian Fang-Bao. NUMERICAL ANALYSIS OF THREE-DIMENSIONAL ELECTRO-CONVECTION OF DIELECTRIC LIQUIDS IN A CUBICAL CAVITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1458-1469. doi: 10.6052/0459-1879-18-301
Citation: Wu Jian, Zhang Mengqi, Tian Fang-Bao. NUMERICAL ANALYSIS OF THREE-DIMENSIONAL ELECTRO-CONVECTION OF DIELECTRIC LIQUIDS IN A CUBICAL CAVITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1458-1469. doi: 10.6052/0459-1879-18-301

三维方腔介电液体电对流的数值模拟研究

doi: 10.6052/0459-1879-18-301
基金项目: 1) 国家自然科学基金(11802079),国家“千人计划”(青年项目) 和澳大利亚ARC DECRA (DE160101098) 资助项目.
详细信息
    作者简介:

    null

    2) 田方宝,高级讲师,主要研究方向:流固耦合和复杂流动数值方法及应用. E-mail:f.tian@adfa.edu.au

  • 中图分类号: O351.2;

NUMERICAL ANALYSIS OF THREE-DIMENSIONAL ELECTRO-CONVECTION OF DIELECTRIC LIQUIDS IN A CUBICAL CAVITY

  • 摘要: 本文对封闭方腔内介电液体电对流进行了三维数值模拟研究.方腔的6个边界为固壁;4个侧边界为电绝缘边界;上下界面为两个电极.直流电场作用在从底部电极注入的自由电荷上,从而对液体施加库伦体积力并驱动流体流动形成电对流.为了求解这一物理问题,发展了一种二阶精度的有限体积法来求解完整的控制方程,包括Navier-Stokes方程和一组简化的Maxwell方程.考虑到电荷密度方程的强对流占优特性,采用了全逆差递减格式来求解该方程,获得了准确有界的解.通过研究发现,该流动在有限振幅区内的分叉类型为亚临界,即系统存在一个线性和非线性临界值,分别对应流动的开始和终止.由于非线性临界值比线性值小,因此两个临界值之间有一个迟滞回线.与无限大域中的自由对流相比,侧壁施加的额外约束改变了流场结构,使这两个临界值均有所增大.此外,还讨论了电荷密度和速度场的空间分布特征,发现电荷密度分布中存在电荷空白区.最后对更小空间尺寸情况计算结果表明,流动的线性分叉类型为超临界.本文的结果拓展了已有的二维有限空间内电对流的研究,并为三维电对流的线性和弱非线性理论分析提供参考.

     

  • [1] Castellanos A.Electrohydrodynamics. Springer Vienna, 1998
    [2] 陈效鹏, 程久生, 尹协振. 电流体动力学研究进展及其应用. 科学通报, 2003, 48(7): 637-646
    [2] (Chen Xiaopeng, Cheng Jiusheng, Yin Xiezhen.Advances and applications of electrohydrodynamics. Chinese Science Bulletin, 2003, 48(7): 637-646(in Chinese))
    [3] Saville DA.Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annual Review of Fluid Mechanics, 2003, 29(29): 27-64
    [4] 张鑫, 黄勇, 阳鹏宇等. 多等离子体激励器诱导射流的湍流特性研究. 力学学报, 2018, 50(4): 776-786
    [4] (Zhang Xin, Huang Yong, Yang Pengyu, et al.Investigation on the turbulent characteristics of the jet induced by a plasma actuator. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 776-786 (in Chinese))
    [5] Paillat T, Touchard G.Electrical charges and liquids motion. Journal of Electrostatics, 2009, 67(2-3): 326-334
    [6] 罗惕乾. 荷电多相流理论及应用. 北京: 机械工业出版社, 2010
    [6] (Luo Tiqian.Theory and Applications of Charged Multiphase Flows. Beijing: China Machine Press, 2010 (in Chinese))
    [7] 李帅兵, 杨睿, 罗喜胜等. 气流作用下同轴带电射流的不稳定性研究. 力学学报, 2017, 49(5): 997-1007
    [7] (Li Shuaibing, Yang Rui, Luo Xisheng, et al.Instability study of an electrified coaxial jet in a coflowing gas stream. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 997-1007 (in Chinese))
    [8] Fylladitakis ED, Theodoridis MP, Moronis AX.Review on the history, research, and applications of electrohydrodynamics. IEEE Transactions on Plasma Science, 2014, 42(2): 358-375
    [9] 甘云华,江政纬,李海鸽. 锥射流模式下乙醇静电喷雾液滴速度特性分析. 力学学报, 2017, 49(6): 1272-1279
    [9] (Gan Yunhua, Jiang Zhengwei, Li Haige.A study on droplet velocity of ethanol during electrospraying process at cone-jet mode. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1272-1279 (in Chinese))
    [10] Atten P.Electrohydrodynamic instability and motion induced by injected space charge in insulating liquids. IEEE Transaction on Dielectrics and Electrical Insulation, 1996, 3(1): 1-17
    [11] Schneider JM, Waston PK.Electrohydrodynamic stability of space-charge-limited currents in dielectric liquids. I. Theoretical study. Physics of Fluids, 1970, 13(8): 1948-1954
    [12] Atten P, Moreau R.Stabilité electrohydrodynamique des liquides isolants soumis à une injection unipolaire. Journal de Mécanique, 1972, 11: 471-520 (in French)
    [13] Atten P, Lacroix JC.Non-linear hydrodynamic stability of liquids subjected to unipolar injection. Journal de Mécanique, 1979, 18: 469-510
    [14] Lacroix JC, Atten P, Hopfinger EJ.Electro-convection in a dielectric liquid layer subjected to unipolar injection. Journal of Fluid Mechanics, 1975, 69(3): 539-563
    [15] Atten P, Lacroix JC, Malraison B.Chaotic motion in a Coulomb force driven instability: Large aspect ratio experiments. Physics Letters A, 1980, 79(4): 255-258
    [16] Malraison B, Atten P.Chaotic behavior of instability due to unipolar ion injection in a dielectric liquid. Physical Review Letters, 1982, 49(10): 723-726
    [17] Zhang M, Martinelli F, Wu J, et al.Modal and non-modal stability analysis of electrohydrodynamic flow with and without cross-flow. Journal of Fluid Mechanics, 2015, 770: 319-349
    [18] Zhang M.Weakly nonlinear stability analysis of subcritical electrohydrodynamic flow subject to strong unipolar injection. Journal of Fluid Mechanics, 2016, 792: 328-363
    [19] Suh YK.Modeling and simulation of ion transport in dielectric liquids - Fundamentals and review. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 831-848
    [20] Chicón R, Castellanos A, Martín E.Numerical modelling of Coulomb-driven convection in insulating liquids. Journal of Fluid Mechanics, 1997, 344: 43-66
    [21] Vázquez PA, Georghiou GE, Castellanos A.Numerical analysis of the stability of the electrohydrodynamic (EHD) electroconvection between two plates. Journal of Physics D$:$ Applied Physics, 2008, 41: 175303-175313
    [22] Traoré P, Pérez AT.Two-dimensional numerical analysis of electroconvection in a dielectric liquid subjected to strong unipolar injection. Physics of Fluids, 2012, 24(3): 037102
    [23] Wu J, Philippe T, Christophe L.An efficient finite volume method for electric field-space charge coupled problems. Journal of Electrostatics, 2013, 71(3): 319-325
    [24] Vázquez PA, Castellanos A, Numerical simulation of EHD flows using discontinuous Galerkin finite element methods. Computers & Fluids, 2013, 84: 270-278
    [25] Luo K, Wu J, Yi H, et al.Lattice Boltzmann model for Coulomb-driven flows in dielectric liquids. Physical Review E, 2016, 93(2): 023309
    [26] Wu J, Philippe T, Alberto TP, et al.On two-dimensional finite amplitude electro-convection in a dielectric liquid induced by a strong unipolar injection. Journal of Electrostatics, 2015, 74: 85-95
    [27] Kourmatzis A, Shrimpton JS.Turbulent three-dimensional dielectric electrohydrodynamic convection between two plates. Journal of Fluid Mechanics, 2012, 696: 228-262
    [28] Luo K, Wu J, Yi H, et al.Three-dimensional finite amplitude electroconvection in dielectric liquids. Physics of Fluids, 2018, 30(2): 023602
    [29] Luo K, Wu J, Yi H, et al.Hexagonal convection patterns and their evolutionary scenarios in electroconvection induced by a strong unipolar injection. Physical Review Fluids, 2018, 3(5): 053702
    [30] Malraison B, Atten P.Exponential decrease of fluctuation spectra for chaotic regime of EHD instability, a universal behavior. Comptes Rendus de l Academie des Sciences Serie II, 1981, 292(3): 267-270
    [31] Chicón R, Pérez AT, Castellanos A.Electroconvection in small cylindrical cavities//IEEE Conference on Electrical Insulation and Dielectric Phenomena, 2003: 710-713
    [32] Philippe T, Wu J.On the limitation of imposed velocity field strategy for Coulomb-driven electroconvection flow simulations. Journal of Fluid Mechanics, 2013, 727: R3
    [33] Wu J, Philippe T, Pedro AV, et al.Onset of convection in a finite two-dimensional container due to unipolar injection of ions. Physical Review E, 2013, 88(5): 053018
    [34] Alberto TP, Pedro AV, Wu J, et al.Electrohydrodynamic linear stability analysis of dielectric liquids subjected to unipolar injection in a rectangular enclosure with rigid sidewalls. Journal of Fluid Mechanics, 2014, 758: 586-602
    [35] Pérez AT, Castellanos A.Role of charge diffusion in finite-amplitude electroconvection. Physical Review A, 1989, 40(10): 5844
    [36] Frey F, Atten P, Frey F.Solid spacer influence on the liquid motion induced by unipolar injection. Journal of Electrostatics, 1978, 5:145-155
    [37] Tobazeon R.Electrohydrodynamic instabilities and electroconvection in the transient and A.C. regime of unipolar injection in insulating liquids: A review. Journal of Electrostatics, 1984, 15(3): 359-384
    [38] Wu J, Philippe T.A finite-volume method for electro-thermoconvective phenomena in a plane layer of dielectric liquid. Numerical Heat Transfer Part A, 2015, 68(5): 471-500
    [39] Patankar SV, Spalding DB.A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 1972, 15(10): 1787-1806
    [40] Rhie CM, Chow WL.Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal, 1983, 21(11): 1525-1532
    [41] Neimarlija N, Demird$\check{z}$i I, Muzaferija S. Finite volume method for calculation of electrostatic fields in electrostatic precipitators. Journal of Electrostatics, 2009, 67(1): 37-47
    [42] Sweby PK.High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal on Numerical Analysis, 1984, 21(5): 995-1011
    [43] Waterson NP, Deconinck. Design principles for bounded higher-order convection schemes-a unified approach. Journal of Computational Physics, 2007, 224(1): 182-207
    [44] Gaskell PH, Lau AKC.Curvature compensated convective transport: SMART, A new boundedness preserving transport algorithm. International Journal for Numerical Methods in Fluids, 2010, 8(6): 617-641
    [45] Albensoeder S, Kuhlmann HC.Accurate three-dimensional lid-driven cavity flow. Journal of Computational Physics, 2005, 206(2): 536-558
    [46] Davis SH.Convection in a box: Linear theory. Journal of Fluid Mechanics, 1967, 30(3): 465-478
    [47] Pallares J, Grau FX, Giralt F.Flow transitions in laminar Rayleigh--Bénard convection in a cubical cavity at moderate Rayleigh numbers. International Journal of Heat and Mass Transfer, 1999, 42(4): 753-769
    [48] Shan X.Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method. Physical Review E, 1997, 55(3): 2780
  • 加载中
计量
  • 文章访问数:  1607
  • HTML全文浏览量:  122
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-09
  • 刊出日期:  2018-11-18

目录

    /

    返回文章
    返回