EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类新的超弹性-循环塑性本构模型

孟令凯 周长东 郭坤鹏 张晓阳

孟令凯, 周长东, 郭坤鹏, 张晓阳. 一类新的超弹性-循环塑性本构模型[J]. 力学学报, 2016, 48(3): 660-674. doi: 10.6052/0459-1879-15-333
引用本文: 孟令凯, 周长东, 郭坤鹏, 张晓阳. 一类新的超弹性-循环塑性本构模型[J]. 力学学报, 2016, 48(3): 660-674. doi: 10.6052/0459-1879-15-333
Meng Lingkai, Zhou Changdong, Guo Kunpeng, Zhang Xiaoyang. A NEW FORMULATION OF CONSTITUTIVE MODEL FOR HYPERELASTIC-CYCLIC PLASTICITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 660-674. doi: 10.6052/0459-1879-15-333
Citation: Meng Lingkai, Zhou Changdong, Guo Kunpeng, Zhang Xiaoyang. A NEW FORMULATION OF CONSTITUTIVE MODEL FOR HYPERELASTIC-CYCLIC PLASTICITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 660-674. doi: 10.6052/0459-1879-15-333

一类新的超弹性-循环塑性本构模型

doi: 10.6052/0459-1879-15-333
基金项目: 国家自然科学基金资助项目(51478033,51178029).
详细信息
    通讯作者:

    周长东,教授,主要研究方向:结构抗震分析.E-mail:zhouchangdong@163.com

  • 中图分类号: TU13

A NEW FORMULATION OF CONSTITUTIVE MODEL FOR HYPERELASTIC-CYCLIC PLASTICITY

  • 摘要: 目前,很多经典的超弹性-有限塑性本构模型已被提出,但由于超弹性理论中中间构型的引入使得随动硬化法则相对复杂,故多数文献均采用的是经典的Armstrong-Frederick(A-F)随动硬化法则.本文基于已有的本构理论,利用多机制过程的概念拓展了Lion塑性变形分解理论,明确提出了多重中间构型的概念,并在此基础上,对经典理论中客观性的定义进行了概念上的推广,使其更好地适用于超弹性本构理论分析,同时提出了一类新的超弹性-有限塑性本构模型.这类本构模型满足热动力学法则,且可融合多种小变形循环塑性理论中常用的随动硬化法则(如经典的A-F模型,Chaboche模型,Ohno-Wang(O-W)模型以及Karim-Ohno(K-O)模型等),使得小变形理论中背应力的加法分解性质及其演化的临界面阶跃特性在大变形领域中均有所体现,故本文提出的本构理论可看作是小变形循环塑性模型在大变形理论中的扩展.本文最后以K-O模型为例,对推荐模型进行了详细探讨,并与相应的次弹性模型进行了对比.

     

  • 1 Coombs WM, Crouch RS, Augarde CE. A unique critical state two-surface hyperplasticity model for fine-grained particulate media. Journal of the Mechanics and Physics of Solids, 2013, 61(1):175-189  
    2 刘时鹏, 施建勇, 雷国辉等. K0 固结饱和土柱孔扩张问题弹塑性分析. 岩土力学, 2013, 34(2): 389-394+403 (Liu Shipeng, Shi Jianyong, Lei Guohui, et al. Elastoplastic analysis of cylindrical cavity expansion in K0 consolidated saturated soils. Rock and Soil Mechanics, 2013, 34(2): 389-394+403 (in Chinese))
    3 王小莉. 橡胶隔振器多轴疲劳寿命预测方法研究. [博士论文]. 广州:华南理工大学, 2014 (Wang Xiaoli. Studies on life prediction of multiaxial fatigue for rubber isolators. [PhD Thesis]. Guangzhou: South China University of Technology, 2014 (in Chinese))
    4 盖芳芳, 才源, 郝俊才等. 超高速撞击压力容器后壁损伤实验及建模研究. 振动与冲击, 2015, 34(13): 12-17 (Gai Fangfang, Cai Yuan, Hao Juncai, et al. Tests and modeling for damage of pressure vessels' rear wall caused by hypervelocity impact. Journal of Vibration and Shock, 2015, 34(13): 12-17 (in Chinese))
    5 Bargmann S, Svendsen B, Ekh M. An extended crystal plasticity model for latent hardening in polycrystals. Computational Mechanics,2011, 48(6): 631-645  
    6 Ishikawa H. Subsequent yield surface probed from its current center. International Journal of Plasticity, 1997, 13(6-7): 533-549
    7 Barlat F, Aretz H, Yoon JW, et al. Linear transformation-based anisotropic yield functions. International Journal of Plasticity,2005, 21(5): 1009-1039  
    8 Suprun AN. A constitutive model with three plastic constants: the description of anisotropic workhardening. International Journal of Plasticity, 2006, 22(7): 1217-1233  
    9 Feigenbaum HP, Dafalias YF. Directional distortional hardening in metal plasticity within thermodynamics. International Journal of Solids and Structures, 2007, 44(22-23): 7526-7542
    10 Armstrong PJ, Frederick CO. A mathematical representation of the multiaxial bauscinger effect. CEGB Report No. RD/B/N 731, Berkeley Nuclear Laboratories, Berkeley, CA, 1966
    11 Chaboche JL, Dang-Van K, Cordier G. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. In: Proceedings of the 5th International Conference on SMiRT, Div. L, Berlin, Germany, 1979
    12 Chaboche JL. Time-independent constitutive theories for cyclic plasticity. International Journal of Plasticity, 1986, 2(2): 149-188  
    13 Ohno N, Wang JD. Kinematic hardening rules with critical state of dynamic recovery, part I: formulations and basic features for ratcheting behavior. International Journal of Plasticity, 1993, 9(3): 375-390  
    14 Abdel-Karim M, Ohno N. Kinematic hardening model suitable for ratcheting with steady-state. International Journal of Plasticity,2000, 16(3-4): 225-240
    15 Xiao H, Bruhns OT, Meyers A. Elastoplasticity beyond small deformations. Acta Mechanica, 2006, 182(1-2):31-111  
    16 Zhu Y, Kang G, Kan Q, et al. Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity. International Journal of Plasticity, 2014, 54(March): 34-55  
    17 Lion A. Constitutive modelling at finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. International Journal of Plasticity, 2000, 16(5): 469-494  
    18 Tsakmakis C, Willuweit A. A comparative study of kinematic hardening rules at finite deformations. International Journal of Non- Linear Mechanics, 2004, 39(4): 539-554  
    19 Shutov AV, Kreißig R. Finite strain viscoplasticity with nonlinear kinematic hardening: phenomenological modeling and time integration. Computer Methods in Applied Mechanics and Engineering,2008, 197(21-24): 2015-2029
    20 Vladimirov IN, Pietryga MP, Reese S. On the modeling of non-linear kinematic hardening at finite strains with application to springbackcomparison of time integration algorithms. International Journal for Numerical Methods in Engineering, 2008, 75(1): 1-28  
    21 Henann DL, Anand L. A large deformation theory for ratedependent elastic-plastic materials with combined isotropic and kinematic hardening. International Journal of Plasticity, 2009,25(10): 1833-1878  
    22 Lee EH. Elastic plastic deformation at finite strains. Journal of Applied Mechanics, 1969, 36(1): 1-6  
    23 Zhu YL, Kang GH, Kan QH, et al. An extended cyclic plasticity model at finite deformations describing the Bauschinger effect and ratchetting behavior. In: 13th International Conference on Fracture June 16-21, 2013, Beijing, China
    24 Zecevic M, Knezevic M. A dislocation density based elasto-plastic self-consistent model for the prediction of cyclic deformation: Application to AA6022-T4. International Journal of Plasticity, 2015,72: 200-217  
    25 Lin RC, BrocksW, Batten J. On internal dissipation inequalities and finite strain inelastic constitutive laws: Theoretical and numerical comparisons. International Journal of Plasticity, 2006, 22: 1825-1857  
    26 Bari S, Hassan T. Anatomy of coupled constitutive models for ratcheting simulation. International Journal of Plasticity, 2000, 16(3-4):381-409
    27 Naghdabadi R, Yeganeh M, Saidi AR. Application of corotational rates of the logarithmic strain in constitutive modeling of hardening materials at finite deformations. International Journal of Plasticity,2005, 21(8): 1546-1567  
    28 Wu HC. On stress rate and plasticity constitutive equations referred to a body-fixed coordinate system. International Journal of Plasticity,2007, 23(9): 1486-1511  
    29 Dafalias Y. Plastic spin: necessity or redundancy. International Journal of Plasticity, 1998, 14(9): 909-31  
    30 Green AE, Naghdi PM. Some remarks on elastic-plastic deformation at finite strain. International Journal of Engineering Science,1971, 9(12): 1219-1229  
    31 Casey J, Naghdi PM. A remark on the use of the decomposition F = FeFp in plasticity. Journal of Applied Mechanics, 1980, 47(3):672-675  
    32 Dashner PA. Invariance considerations in large strain elastoplasticity. Journal of Applied Mechanics, 1986, 53(1): 55-60  
    33 Gurtin ME, Anand L. The decomposition F = (FFp)-F_e, material symmetry, and plastic irrotationality for solids that are isotropicviscoplastic or amorphous. International Journal of Plasticity,2005, 21(9): 1686-1719  
  • 加载中
计量
  • 文章访问数:  1174
  • HTML全文浏览量:  112
  • PDF下载量:  616
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-05
  • 修回日期:  2016-01-19
  • 刊出日期:  2016-05-18

目录

    /

    返回文章
    返回