EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MUSTA格式的全非线性Boussinesq波浪传播数值模型

房克照 王磊 刘忠波 邹志利 尹晶

房克照, 王磊, 刘忠波, 邹志利, 尹晶. 基于MUSTA格式的全非线性Boussinesq波浪传播数值模型[J]. 力学学报, 2014, 46(5): 647-654. doi: 10.6052/0459-1879-13-338
引用本文: 房克照, 王磊, 刘忠波, 邹志利, 尹晶. 基于MUSTA格式的全非线性Boussinesq波浪传播数值模型[J]. 力学学报, 2014, 46(5): 647-654. doi: 10.6052/0459-1879-13-338
Fang Kezhao, Wang Lei, Liu Zhongbo, Zou Zhili, Yin Jing. A FULLY NONLINEAR BOUSSINESQ MODELFOR WAVE PROPAGATION BASED ON MUSTA SCHEME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 647-654. doi: 10.6052/0459-1879-13-338
Citation: Fang Kezhao, Wang Lei, Liu Zhongbo, Zou Zhili, Yin Jing. A FULLY NONLINEAR BOUSSINESQ MODELFOR WAVE PROPAGATION BASED ON MUSTA SCHEME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 647-654. doi: 10.6052/0459-1879-13-338

基于MUSTA格式的全非线性Boussinesq波浪传播数值模型

doi: 10.6052/0459-1879-13-338
基金项目: 国家创新研究团队(51221961)和国家海洋局海域管理技术重点实验室(201206)资助项目.
详细信息
    作者简介:

    房克照,讲师,主要研究方向:海岸动力学.E-mail:kfang@dlut.edu.cn

  • 中图分类号: O353.2

A FULLY NONLINEAR BOUSSINESQ MODELFOR WAVE PROPAGATION BASED ON MUSTA SCHEME

Funds: The project was supported by the National Foundation for Creative Research Groups (51221961) and National Marine Environmental Monitoring Center (201206).
  • 摘要: 建立了求解二维全非线性布氏(Boussinesq)水波方程的有限差分/有限体积混合数值格式. 针对守恒形式的控制方程,采用有限体积方法并结合 MUSTA格式计算数值通量, 剩余项则采用有限差分方法求解, 采用具有总变差减小(totalvariation diminishing, TVD)性质的三阶龙格-库塔法进行时间积分.该格式具备间断捕捉、程序实现简单、数值稳定性强、海岸动边界以及波浪破碎处理方便和可调参数少等优点.利用典型算例对数值模型进行了验证,计算结果与实验数据吻合较好.

     

  • 李孟国, 王正林, 蒋德才. 关于波浪Boussines方程的研究. 青岛海洋大学学报, 2002, 32(3): 345-354 (Li Mengguo, Wang Zhenglin, Jiang Decai. Study on the Boussinesq equations. Journal of Ocean University of Qindao, 2002, 32(3): 345-354 (in Chinese))
    马小舟, 董国海, 滕斌. 基于Boussinesq方程的波浪模型. 力学学报, 2006, 38(6): 760-766 (Ma Xiaozhou, Dong Guohai, Teng Bin. A wave model based on the Boussinesq equations. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 760-766 (in Chinese))
    王大国, 邹志利, 唐春安. 港口非线性波浪耦合计算模型研究. 力学学报, 2007, 39(5): 587-594 (Wang Daguo, Zou Zhili, Tang Chunan. The coupled numerical model of non-linear wave harbour. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5): 587-594 (in Chinese))
    桂琴琴, 邹志利, 王大国. 箱形船体波浪和波浪压力的非线性时域模型. 工程力学, 2011, 28(2): 239-245 (Gui Qinqin, Zou Zhili, Tang Chunan. Time-domian model of nonlinear wave forces on a box-shaped ship. Engineering Mechanics, 2011, 28(2): 239-245 (in Chinese))
    Liu SX, Sun ZB, Li JX. An unstructured fem model based on boussinesq equations and its application to the calculation of multidirectional wave run-up in a cylinder group. Applied Mathematical Modelling, 2012, 36(6): 4146-4164
    Shi FY, Kirby JT, Harris JC, et al. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 2012(43-44): 36-51
    Kirby JT, Wei G, Chen Q, et al.FUNWAVE1.0 Fully Nonlinear Boussinesq Wave Model Documentation and User'S Manual. Newwark:CACR, 1998
    Lynett PJ.Nearshore wave modeling with high-order Boussinesq-type equations.Journal of Waterway, Port, Coastal, and Ocean Engineering , 2006, 132(1): 348-357
    张明亮, 时锋, 郝子宁. 具有捕捉能力的一维溃坝波及孤立波爬坡数学模型. 水动力研究与进展, 2012, 27(6): 687-695 (Zhang Mingliang, Shi Feng, Hao Zining. One dimensional numerical model for dam break wave and solitary wave runup with shock capturing capacity. Chinese Journal of Hydrodynamics, 2012, 27(6): 687-695 (in Chinese))
    Bradford SF, Sanders BF. Finite volume schemes for the Boussinesq equations. In: Proc. of Ocean Wave Measurement and Analysis. 2001, 953-962
    Erduran KS, Llic S, Kutijia V. Hybrid-finite volume finite-difference scheme for the solution of Boussinesq equations. International Journal for Numerical Methods in Fluids, 2005, 49: 1213-1232  
    Cienfuegos R, Barthelemy E, Bonneton P. A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part II: boundary conditions and validation. International Journal for Numerical Methods in Fluids, 2007, 53: 1423-1455  
    Shiach JB, Mingham CG. A temporally second-order accurate Godunov-type scheme for solving the extended Boussinesq equations. Coastal Engineering, 2009, 59(1): 32-45
    Orszaghova J, Borthwick AGL, Taylor PH. From the paddle to the beach-A Boussinesq shallow water numerical wave tank based on Madsen and Sorensen's equations. Journal of Computational Physics, 2011, 231: 328-344
    Roeber V, Cheung KF, Kobayashi MH. Shock-capturing Boussinesq-type model for nearshore wave processes. Coastal Engineering, 2010, 57(4): 407-423  
    房克照, 邹志利, 孙家文等. 扩展型Boussinesq水波方程的混合求解格式. 水科学进展, 2013, 24(5): 699-705 (Fang Kezhao, Zou Zhili, Sun Jiawen, et al. A hybrid numerical scheme for the extended Boussinesq equations. Advances in Water Science, 2013, 24(5): 699-705 (in Chinese))
    Roeber V, Cheung KF. Boussinesq-type model for energetic breaking waves in fringing reef environments. Coastal Engineering, 2012, 70: 1-20  
    Tonelli M, Petti M. Finite volume scheme for the solution of 2D extended Boussinesq equations in the surf zone. Ocean Engineering , 2010, 37(4): 567-582
    Toro EF. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer Verlag, 2009
    Toro EF. MUSTA: A multi-stage numerical flux. Applied Numerical Mathematics, 2006, 56(10-11): 1464-1479
    Toro EF. MUSTA fluxes for systems of conservation laws. Journal of Computational Physics, 2006, 216(2): 403-429  
    Guo WD, Lao JS, Lin GF. Finite-volume multi-stage schemes for shallow-water flow simulation. International Journal for Numerical Methods in Fluids, 2008, 57(2): 177-204  
    Wei G, Kirby JT, Grilli ST et al. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 1995, 294: 71-92
    Zou ZL, Fang KZ. Alternative forms of the higher-order Boussinesq equations: Derivations and validations. Coastal Engineering, 2008, 55(6): 506-521  
    Yamamoto S, Kano S, Daiguji H. An efficient CFD approach for simulating unsteady hypersonic shock-shock interference flows. Comput. Fluids, 1998, 27(5-6): 571-580
    Berkhoff JCW, Booy N, Radder AC. Verification of numerical wave propagation models for simple harmonic linear waves. Coastal Engineering, 1982, 6: 255-379  
    Swigle DT. Laboratory study of the three-dimensional turbulence and kinematic properties associated with a breaking solitary wave. [Master Thesis], Texas: Texas A&M University, 2009
  • 加载中
计量
  • 文章访问数:  1384
  • HTML全文浏览量:  81
  • PDF下载量:  999
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-14
  • 修回日期:  2014-03-10
  • 刊出日期:  2014-09-18

目录

    /

    返回文章
    返回