EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PCE方法的翼型不确定性分析及稳健设计

赵轲 高正红 黄江涛 李静

赵轲, 高正红, 黄江涛, 李静. 基于PCE方法的翼型不确定性分析及稳健设计[J]. 力学学报, 2014, 46(1): 10-19. doi: 10.6052/0459-1879-13-127
引用本文: 赵轲, 高正红, 黄江涛, 李静. 基于PCE方法的翼型不确定性分析及稳健设计[J]. 力学学报, 2014, 46(1): 10-19. doi: 10.6052/0459-1879-13-127
Zhao Ke, Gao Zhenghong, Huang Jiangtao, Li Jing. UNCERTAINTY QUANTIFICATION AND ROBUST DESIGN OF AIRFOIL BASED ON POLYNOMIAL CHAOS TECHNIQUE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 10-19. doi: 10.6052/0459-1879-13-127
Citation: Zhao Ke, Gao Zhenghong, Huang Jiangtao, Li Jing. UNCERTAINTY QUANTIFICATION AND ROBUST DESIGN OF AIRFOIL BASED ON POLYNOMIAL CHAOS TECHNIQUE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 10-19. doi: 10.6052/0459-1879-13-127

基于PCE方法的翼型不确定性分析及稳健设计

doi: 10.6052/0459-1879-13-127
详细信息
    作者简介:

    赵轲,博士研究生,主要研究方向:飞行器气动设计.

  • 中图分类号: V211.3

UNCERTAINTY QUANTIFICATION AND ROBUST DESIGN OF AIRFOIL BASED ON POLYNOMIAL CHAOS TECHNIQUE

  • 摘要: 由于能够获得一个既经济又对参数变化不敏感的设计结果,稳健型设计在工程设计中备受关注. 不确定性分析是稳健型设计的关键. 因此研究了基于混沌多项式的不确定性分析方法,并将其与CFD 方法结合,对计算空气动力学设计中的不确定性影响进行了量化分析. 首先以RAE2822 翼型为算例,对其跨音速马赫数不确定影响进行了分析,研究了多项式阶次对计算的影响,分析了平均流场和方差. 接着结合超临界翼型的马赫数稳健型设计验证了混沌多项式方法在稳健型设计中的有效性. 优化结果表明,稳健型优化后的翼型阻力系数明显降低,同时对于马赫数的敏感性显著减小. 通过分析表明混沌多项式方法能够大幅提高稳健型优化设计效率,能很好地应用于气动稳定性设计.

     

  • Li W, Huyse L, Padula S. Robust airfoil optimization to achieve consistent drag reduction over a Mach range. ICASE Report No. 2001-22 , 2001
    陈立周. 稳健设计. 北京: 机械工业出版社, 2000. 5(Cheng Lizhou. Robust Design. Beijing: Mechanical Industry Press, 2000. 5 (in Chinese))
    Zhong XP,Ding JF, Li WJ, et al. Robust airfoil optimization with multi-objective estimationof distribution algorithm. Chinese Journal of Aeronautics, 2008, 21(4): 289-295  
    Anile AM, Spinella S, Rinaudo S. Stochastic response surface method and tolerance analysis in microelectronics, COMPEL. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2003, 22(2): 314-327  
    Tatang MA, Pan W, Prinn RG, et al. An efficient method for parametric uncertainty analysis of numerical geophysical models. Journal of Geophysical Research, 1997, 102(D18): 21925-21932
    Wiener N. The homogeneous chaos. American Journal of Mathematics, 1938, 60: 897-936  
    Ghanem R, Spanos P. Stochastic Finite Elements: A Spectral Approach. New York: Springer-Verlag, 1991
    Ghanem RG. Ingredients for a general purpose stochastic finite element formulation. Computational Methods in Applied Mechanical Engineering, 1999, 168: 19-34  
    Mathelin L, Hussaini MY, Zang TZ, et al. Uncertainty propagation for turbulent, compressible nozzle flow using stochastic methods. AIAA Journal, 2004, 42(8): 1669-1676  
    Xiu D, Karniadakis GE. Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of Computational Physics, 2003, 187(1): 137-167  
    Debusschere BJ, Najm HN, Pebay PP, et al. Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM Journal on Scientific Computing, 2004, 26(2): 698-719  
    Reagan M, Najm HN, Ghanem RG, et al. Uncertainty quantification in reacting flow simulationsthrough non-intrusive spectral projection. Combustion and Flame, 2003, 132: 545-555  
    Mathelin L, Hussaini MY, Zang TZ. Stochastic approaches to uncertainty quantification in CFD simulations. Numerical Algorithms, 2005, 38(1): 209-236  
    Wataru Y. Stochastic drag analysis via polynomial chaos uncertainty quantification. AIAA 2013-0962, 2013
    王晓东, 康顺. 多项式混沌方法在随机方腔流动模拟中的应用. 中国科学: 技术科学, 2011, 41(6): 790-798 (Wang Xiaodong, Kang Shun. Application of polynomial chaos on numerical simulation of stochastic cavity flow. Sci China Tech Sci, 2011, 41(6): 790-798 (in Chinese))
    Mathelin L, Hussaini MY, Zang TZ. Stochastic approaches to uncertainty quantification in CFD simulations. Numerical Algorithms, 2005, 38(1): 209-236  
    Eldred MS, Burkardt J. Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification. AIAA Paper 2009-0976, 2009
    Cameron RH, Martin WT. The orthogonal development of non-linear functionals in series of fourier-hermite functionals. Annals of Mathematics, 1947, 48(2): 385-392  
    Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation, 2002, 6(2): 181-197
    Jacob CH, William AC. A parametric approach to supercritical airfoil design optimization. AIAA Paper 2009-6950, 2009
    Ceze M. A study of the CST Parameterization Characteristics. AIAA Paper 2009-3767, 2009
    Kulfan BM. Universal parametric geometry representation method. Journal of Aircraft, 2008, 45(1): 142-158  
    李静,高正红,黄江涛等. 基于CST参数化方法气动优化设计研究. 空气动力学学报, 2012, 30(4): 443-449 (Li Jing, Gao Zhenghong, Huang Jiangtao, et al. Aerodynamic optimization system based on CST technique. Acta Aerodynamic Sinica, 2012, 30(4): 443-449 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1066
  • HTML全文浏览量:  39
  • PDF下载量:  1357
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-23
  • 修回日期:  2013-07-02
  • 刊出日期:  2014-01-18

目录

    /

    返回文章
    返回