EI、Scopus 收录
中文核心期刊
何粲, 邢建文, 欧阳浩, 邓维鑫, 肖保国. 飞行Ma12条件超燃发动机流场及燃烧特征分析. 力学学报, 2022, 54(3): 622-632. DOI: 10.6052/0459-1879-21-496
引用本文: 何粲, 邢建文, 欧阳浩, 邓维鑫, 肖保国. 飞行Ma12条件超燃发动机流场及燃烧特征分析. 力学学报, 2022, 54(3): 622-632. DOI: 10.6052/0459-1879-21-496
He Can, Xing Jianwen, Ouyang Hao, Deng Weixin, Xiao Baoguo. Flow field and combustion characteristics analysis of sramjet under Ma12 flight condition. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 622-632. DOI: 10.6052/0459-1879-21-496
Citation: He Can, Xing Jianwen, Ouyang Hao, Deng Weixin, Xiao Baoguo. Flow field and combustion characteristics analysis of sramjet under Ma12 flight condition. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 622-632. DOI: 10.6052/0459-1879-21-496

飞行Ma12条件超燃发动机流场及燃烧特征分析

FLOW FIELD AND COMBUSTION CHARACTERISTICS ANALYSIS OF SRAMJET UNDER Ma12 FLIGHT CONDITION

  • 摘要: 为提升针对高马赫数发动机的模拟能力, 对计算方法进行了可压缩性修正, 并针对飞行Ma12条件下超燃冲压发动机进行了多状态三维数值模拟, 分析了发动机内波系、参数以及燃烧性能特征. 研究结果表明: (1)修正后的方法计算所得激波位置及强度与试验值吻合, 在激波串模拟、高马赫数发动机模拟上均展现了更优的能力. (2)发动机内形成激波与反射波系, 燃烧并未改变波系贯穿流道的基本结构, 且随着当量比增加, 激波角增大, 反射激波数量增多, 激波交汇带来的温升与压升有利于燃烧释热, 且随着反射激波沿流向减弱, 激波导致的壁面热流升高现象逐渐减弱. (3)流场中绝大部分区域为非预混燃烧. 燃烧室后段平均静温超过2500 K, 完全产物H2O减少, H2与O2燃烧效果变差, 发动机可利用的有效释热在燃烧室前段增加, 在后段减少. O原子复合主要发生在喷管中. (4)当量比0.5时, 化学反应主要发生在燃烧室前部; 当量比1.0时, 反应距离更长. 当量比0.5与1.0下燃烧室阻力差异较小, 总推力系数提升主要由尾喷管贡献. 燃烧会导致燃烧室摩阻及整机总摩阻减小, 进气道与尾喷管摩阻变化较小.

     

    Abstract: The compressibility correction of the calculation method is conducted to improve the simulation ability of high Mach number scramjet. The three-dimensional numerical simulations of the scramjet at Mach 12 flight condition are carried out. The shock system, parameters characteristics and combustion performance of the scramjet are analyzed. The results indicate that the position and intensity of shock wave calculated by the modified method are consistent with the experimental data. The modified method shows better ability in shock wave and high Ma scramjet simulation. The shock wave and reflected shock systems are formed in the scramjet. The basic structure of shock system through the flow path will not be changed by the combustion. The angle and number of shock waves will increase with the increase of equivalence ratio. The temperature rise and pressure rise induced by the intersection of shock waves are conducive to combustion heat release. The increase of wall heat flux caused by shock waves gradually reduces with the weakening of reflected shock waves along the flow direction. Most of the combustion is non-premixed in the flow field. The average temperature in the combustor exceeds 2500 K so that the efficiency of H2-O2 combustion deteriorates and the complete combustion product H2O decreases. The available effective heat release increases in the forepart of the combustor and decreases in the rear section. O atom recombination mainly occurs in the nozzle. The chemical reactions are mainly conducted in the forepart of the combustor at the equivalence ratio of 0.5, while the reaction distance is longer at the equivalence ratio of 1.0. The difference between combustor drags of the two cases is small and the increase of total thrust coefficient is mainly contributed by the nozzle. Combustion will lead to the reduction of the combustor friction and whole model friction, while the changes of inlet friction and nozzle friction are not obvious.

     

/

返回文章
返回