Chinese Journal of Theoretical and Applied Mechanics ›› 2020, Vol. 52 ›› Issue (2): 420-430.DOI: 10.6052/0459-1879-19-251
• Fluid Mechanics • Previous Articles Next Articles
Zhang Zhiwei,Yin Xiangyu,Zhu Chunying,Ma Youguang,Fu Taotao()
Received:
2019-09-06
Accepted:
2020-01-17
Online:
2020-03-18
Published:
2020-03-15
Contact:
Fu Taotao
CLC Number:
Zhang Zhiwei, Yin Xiangyu, Zhu Chunying, Ma Youguang, Fu Taotao. SELF-ASSEMBLY OF BUBBLE SWARM IN LARGE CAVITIES IN STEP-TYPE PARALLELIZED MICROCHANNELS AND ITS FEEDBACK ON BUBBLE FORMATION 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 420-430.
Add to citation manager EndNote|Ris|BibTeX
[1] | Fu TT, Ma YG, Funfschilling D , et al. Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chemical Engineering Science, 2009,64(10):2392-2400 |
[2] | 王兆伟, 武晓刚, 陈魁俊 等. 一种力-电协同驱动的细胞微流控培养腔理论模型. 力学学报, 2018,50(1):124-137 |
( Wang Zhaowei, Wu Xiaogang, Chen Kuijun , et al. A theoretical microfluidic flow model for the cell culture chamber under the pressure gradient and electric field driven loads. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):124-137 (in Chinese)) | |
[3] | Zhao YC, Chen GW, Yuan Q . Liquid-liquid two-phase flow patterns in a rectangular microchannel. AICHE Journal, 2006,52(12):4052-4060 |
[4] | 韩宇, 刘志军, 王云峰 . T型微通道反应器内气液两相流动机制及影响因素. 力学学报, 2019,51(2):441-449 |
( Han Yu, Liu Zhijun, Wang Yunfeng . Gas-liquid two-phase flowregimes and impact factors in T-junction microreactor. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):441-449 (in Chinese)) | |
[5] | Li GH, Yuan XG, Song WQ . Gradient mesh approach for capturing characteristics of gas-liquid Taylor flow in microchannels. Chemcial Industry and Engineering, 2016,33(5):86-95 |
[6] | 高天达, 孙姣, 范赢 等. 基于PIV 技术分析颗粒在湍流边界层中的行为. 力学学报, 2019,51(1):103-110 |
( Gao Tianda, Sun Jiao, Fan Ying , et al. PIV experimental investigation on the behavior of particle in the turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):103-110 (in Chinese)) | |
[7] | Yuan Q, Chen GW, Yue J . Gas-liquid microreaction technology: recent developments and future challenges. Chinese Journal of Chemical Engineering, 2008,16(5):663-669 |
[8] | Groisman A, Enzelberger M, Quake SR . Microfluidic memory and control devices. Science, 2003,300(5621):955-958 |
[9] | 霍元平, 王军锋, 左子文 等. 滴状模式下液桥形成及断裂的电流体动力学特性研究. 力学学报, 2019,51(2):425-431 |
( Huo Yuanping, Wang Junfeng, Zuo Ziwen , et al. Electrohydrodynamic characteristics of liquid bridge formation at the dripping mode of electrosprays. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):425-431 (in Chinese)) | |
[10] | Jähnisch K, Hessel V, Löwe H , et al. Chemistry in microstructured reactors. Angewandte Chemie International Edition, 2004,43:406-446 |
[11] | Zhang J, Coulston RJ, Jones ST , et al. One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science, 2012,335:690-694 |
[12] | 王彦, 王靖涛 . 微流控技术制备聚酰胺微胶囊的工艺研究. 化学工业与工程, 2018,35(6):20-25 |
( Wang Yan, Wang Jingtao . Preparation of polyamide microcapsules based on microfluidics. Chemcial Industry and Engineering, 2018,35(6):20-25 (in Chinese)) | |
[13] | Leclerc A, Alame M, Schweich D , et al. Gas-liquid selective oxidations with oxygen under explosive conditions in a microstructured reactor. Lab on a Chip, 2008,8:814-817 |
[14] | Al-Rawashdeh M, Zalucky J, Müller C , et al. Phenylacetylene hydrogenation over [Rh(NBD)(PPh3)2]BF4 catalyst in a numbered-up microchannels reactor. Industrial & Engineering Chemistry Research, 2013,52:11516-11526 |
[15] | Lang P, Hill M, Krossing I , et al. Multiphase minireactor system for direct fluorination of ethylene carbonate. Chemical Engineering Journal, 2012,179:330-337 |
[16] | 李韡, 张昱, 孟昊 . 微通道中液-液萃取传质特性的研究. 化学工业与工程, 2013,30(4):36-41 |
( Li Wei, Zhang Yu, Meng Hao . Mass transfer characteristics of liquid-liquid extraction in microchannel. Chemcial Industry and Engineering, 2013,30(4):36-41 (in Chinese)) | |
[17] | Anna SL . Droplets and bubbles in microfluidic devices. Annual Review of Fluid Mechanics, 2016,48:285-309 |
[18] | Rodríguez J, Sevilla A, Martínez-Bazán C , et al. Generation of microbubbles with applications to industry and medicine. Annual Review of Fluid Mechanics, 2015,47:405-429 |
[19] | Lu YT, Fu TT, Zhu CY , et al. Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device. Microfluidics and Nanofluidics, 2014,16:1047-1055 |
[20] | Fu TT, Ma YG . Bubble formation and breakup dynamics in microfluidic devices: A review. Chemical Engineering Science, 2015,135:343-372 |
[21] | Nisisako T, Torii T, Higuchi T . Droplet formation in a microchannel network. Lab on a Chip, 2002,2(1):24-26 |
[22] | van Dijke KC, Karin CP, Schroën GH , et al. Microchannel emulsification: from computational fluid dynamics to predictive analytical model. Langmuir, 2008,24(18):10107-10115 |
[23] | Alessandro Ofner IM, Hagander M, Dutto A , et al. Controlled massive encapsulation via tandem step emulsification in glass. Advanced Functional Materials, 2018,29(4):1-9 |
[24] | Stoffel M, Wahl S, Lorenceau E , et al. Bubble production mechanism in a microfluidic foam generator. Physical Review Letters, 2012,108(19):198302 |
[25] | Seo M, Nie Z, Xu S , et al. Microfluidics: from dynamic lattices to periodic arrays of polymer disks. Langmuir, 2005,21(11):4773-4775 |
[26] | Whitesides GM, Boncheva M . Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proceedings of the National Academy of Sciences of the United States of America. 2002,99(8):4769-4774 |
[27] | Surenjav E, Herminghaus S, Priest C , et al. Discrete microfluidics-reorganizing droplet arrays at a bend. Applied Physics Letters, 2009,95:154104 |
[28] | Surenjav E, Priest C, Herminghaus S , et al. Manipulation of gel emulsions by variable microchannel geometry. Lab on a Chip, 2009,9(2):325-330 |
[29] | Raven JP, Marmottant P . Periodic microfluidic bubbling oscillator: insight into the stability of two-phase microflows. Physical Review Letters, 2006,97(15):154501 |
[30] | Parthiban P, Doyle PS, Hashimoto M . Self-assembly of droplets in three-dimensional microchannels. Soft Matter, 2019,15(21):4244-4254 |
[31] | 赵绍磊, 王灵宇, 吴送姑 . 药物多晶型的研究进展. 化学工业与工程, 2018,35(3):12-21 |
( Zhao Shaolei, Wang Lingyu, Wu Songgu . Progress in the research of pharmaceutical polymorph. Chemcial Industry and Engineering, 2018,35(3):12-21 (in Chinese)) | |
[32] | Vuong SM, Anna SL . Tuning bubbly structures in microchannels. Biomicrofluidics, 2012,6:022004 |
[33] | Garstecki P, Whitesides GM . Flowing crystals: Nonequilibrium structure of foam. Physical Review Letters, 2006,97(2):024503 |
[34] | Beatus T, Tlusty T, Bar-Ziv R . Phonons in a one-dimensional microfluidic crystal. Nature Physics, 2006,2(11):743-748 |
[35] | Thorsen T, Roberts RW, Arnold FH , et al. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 2001,86(18):4163-4166 |
[36] | Raven JP, Marmottant P . Microfluidic crystals: dynamic interplay between rearrangement waves and flow. Physical Review Letters, 2009,102(8):084501 |
[37] | Conchouso D, Castro D, Khan SA , et al. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions. Lab on a Chip, 2014,14(16):3011-3020 |
[38] | 马余强 . 软物质的自组织. 物理学进展, 2002,22(1):73-98 |
( Ma Yuqiang . Self organization in softmatter. Progress In Physics, 2002,22(1):73-98 (in Chinese)) | |
[39] | 苏扬, 余晓畅, 孙梓翔 . 胶体晶体自组装常用方法的研究进展. 人工晶体学报, 2019,48(9):1742-1753 |
( Su Yang, Yu Xiaochang, Sun Zixiang . Research progress of common self-assembly methods for colloidal crystals. Journal of Synthetic Crystals, 2019,48(9):1742-1753 (in Chinese)) | |
[40] | Höhler R, Cohen-Addad S . Rheology of liquid foam. Journal of Physics: Condensed Matter, 2005,17(41):R1041-R1069 |
[41] | Zheng C, Zhao BH, Wang K , et al. Bubble generation rules in microfluidic devices with microsieve array as dispersion medium. AIChE Journal, 2015,61(5):1663-1676 |
[1] | Hu Wulong, Liu Guofeng, Yan Shilin, Fan Yanwei. PORE-SCALE LATTICE BOLTZMANN MODELING OF SOIL WATER DISTRIBUTION1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 568-579. |
[2] | Feng Shiliang, Zhou Lüwen, Lü Shouqin, Long Mian. MECHANOCHEMICAL COUPLING MODEL AND NUMERICAL SIMULATION FOR CELL-CELL ADHESION IN SUSPENDED EPITHELIAL CELLS1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 854-863. |
[3] | Gen Liu, Wei Zhang. NONLINEAR VIBRATIONS OF COMPOSITE CANTILEVER PLATE IN SUBSONIC AIR FLOW1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 912-921. |
[4] | Wenlai Cai, Yajun Huang, Weiyang Liu, Haoyu Peng, Zhigang Huang. MULTISCALE SIMULATION OF THE DIELECTROPHORESIS SEPARATION PROCESS OF FLEXIBLE MICROPARTICLE [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 405-414. |
[5] | Yu Han, Zhijun Liu, Yunfeng Wang, Yao Luo, Fengxia Liu, Xiaojuan Wang, Wei Wei, Xiaofei Xu. GAS-LIQUID TWO-PHASE FLOW REGIMES AND IMPACT FACTORS IN T-JUNCTION MICROREACTOR [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 441-449. |
[6] | Cheng Zhilin, Ning Zhengfu, Zeng Yan, Wang Qing, Sui Weibo, Zhang Wentong, Ye Hongtao, Chen Zhili. A LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN POROUS MEDIA USING A MODIFIED BOUNDARY CONDITION [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 124-134. |
[7] | Chen Rongqian, Nie Deming. NUMERICAL STUDY ON THE ROTATION OF AN ELLIPTICAL PARTICLE IN SHEAR FLOW [J]. Chinese Journal of Theoretical and Applied Mechani, 2017, 49(2): 257-267. |
[8] | Zheng Yijun, Li Qingxiang, Pan Ming, Dong Yuhong. SPACE-TIME CORRELATIONS OF FLUCTUATING VELOCTUATING IN POROUS WALL-BOUNDED TURBULENT SHEAR FLOWS [J]. Chinese Journal of Theoretical and Applied Mechani, 2016, 48(6): 1308-1318. |
[9] | Liu Zhaomiao, Yang Yang. INFLUENCE OF GEOMETRY CONFIGURATIONS ON THE MICRODROPLETS IN FLOWFOCUSING MICROFLUIDICS [J]. Chinese Journal of Theoretical and Applied Mechani, 2016, 48(4): 867-876. |
[10] | Meng Xuhui, Wang Liang, Guo Zhaoli. FORCE EVALUATION USING MOMENTUM-EXCHANGEMETHOD IN POROUS MEDIA [J]. , 2014, 46(4): 525-532. |
[11] | Shi Dongyan, Wang Zhikai, Zhang Aman. A NOVEL LATTICE BOLTZMANN MODEL SIMULATING GAS-LIQUID TWO-PHASE FLOW [J]. Chinese Journal of Theoretical and Applied Mechani, 2014, 46(2): 224-233. |
[12] | Liu Zhaomiao, Liu Likun, Shen Feng. TWO-PHASE FLOW CHARACTERISTICS IN Y-JUNCTION MICROCHANNEL [J]. Chinese Journal of Theoretical and Applied Mechani, 2014, 46(2): 209-216. |
[13] | Dong Bo, Li Weizhong, Feng Yujing, Sun Tao. LATTICE BOLTZMANN SIMULATION OF A POWER-LAW FLUID PAST A CIRCULAR CYLINDER [J]. Chinese Journal of Theoretical and Applied Mechani, 2014, 46(1): 44-53. |
[14] | An Bo, Sang Weimin. THE NUMERICAL STUDY OF LATTICE BOLTZMANN METHOD BASED ON DIFFERENT GRID STRUCTURE [J]. Chinese Journal of Theoretical and Applied Mechani, 2013, 45(5): 699-706. |
[15] | Zhu Bojing, Shi Yaolin. STUDY OF TIGHT SANDSTONE PERMEABILITY FROM LATTICE BOLTZMANN & DIGITAL ROCK MODEL [J]. Chinese Journal of Theoretical and Applied Mechani, 2013, 45(3): 384-394. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||