Chinese Journal of Theoretical and Applied Mechanics ›› 2018, Vol. 50 ›› Issue (4): 863-870.DOI: 10.6052/0459-1879-18-111
• Orginal Article • Previous Articles Next Articles
Qi Zhaohui1,*(), Cao Yan1, Wang Gang2,*(
)
Online:
2018-07-18
Published:
2018-08-17
Contact:
Qi Zhaohui,Wang Gang
CLC Number:
Qi Zhaohui, Cao Yan, Wang Gang. MODEL SMOOTHING METHODS IN NUMERICAL ANALYSIS OF FLEXIBLE MULTIBODY SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 863-870.
Add to citation manager EndNote|Ris|BibTeX
Solvers | Maximum absolute error | Time/s |
---|---|---|
ODE45 | 376.9 | |
ODE15s | 884.4 | |
MS | 0.27 |
Table 2 Comparisons of precision and efficiency (εr=1.0×10-4, εa=1.0×10-6)
Solvers | Maximum absolute error | Time/s |
---|---|---|
ODE45 | 376.9 | |
ODE15s | 884.4 | |
MS | 0.27 |
Solvers | Maximum absolute error | Time/s |
---|---|---|
ODE45 | 376.7 | |
ODE15s | 0.24 | |
MS | 0.24 |
Table 3 Comparisons of precision and efficiency (εr=1.0×10-2, εa=1.0×10-3)
Solvers | Maximum absolute error | Time/s |
---|---|---|
ODE45 | 376.7 | |
ODE15s | 0.24 | |
MS | 0.24 |
Solvers | Maximum absolute error | Time/s |
---|---|---|
MS | 0.31 | |
MS | 1.06 | |
MS | 5.80 | |
MS | 0.57 |
Table 4 Comparisons of precision and efficiency (rigid-flexible coupling system)
Solvers | Maximum absolute error | Time/s |
---|---|---|
MS | 0.31 | |
MS | 1.06 | |
MS | 5.80 | |
MS | 0.57 |
Solvers | Time/s |
---|---|
radau5 | 22 680 |
MS | 14 |
MS | 116 |
MS | - - |
Table 5 Efficiency comparison (flexible double pendulum mechanism)
Solvers | Time/s |
---|---|
radau5 | 22 680 |
MS | 14 |
MS | 116 |
MS | - - |
[1] | 田强, 刘铖, 李培等. 多柔体系统动力学研究进展与挑战. 动力学与控制学报, 2017, 15(5): 385-405 |
(Tian Qiang, Liu Cheng, Li Pei, et al.Advances and challenges in dynamics of flexible multibody systems.Journal of Dynamics and Control, 2017, 15(5): 385-405 (in Chinese)) | |
[2] | 王琪, 庄方方, 郭易圆等. 非光滑多体系统动力学数值算法的研究进展. 力学进展, 2013, 43(1): 101-111 |
(Wang Qi, Zhuang Fangfang, Guo Yiyuan, et al.Advances in the research on numerical methods for non-smooth dynamics of multibody systems.Advances in Mechanics, 2013, 43(1): 101-111 (in Chinese)) | |
[3] | 刘才山, 陈滨, 彭瀚等. 多体系统多点碰撞接触问题的数值求解方法. 动力学与控制学报, 2003, 1(1): 59-65 |
(Liu Caishan, Chen Bin, Peng Han, et al.Numerical resolution of multibody systems with multiple contact/impact points.Journal of Dynamics and Control, 2003, 1(1): 59-65 (in Chinese)) | |
[4] | 姚文莉, 岳嵘. 有争议的碰撞恢复系数研究进展. 振动与冲击, 2015, 34(19): 43-48 |
(Yao Wenli, Yue Rong.Advance in controversial restitution coefficient study for impact problems.Journal of Vibration and Shock, 2015, 34(19): 43-48 (in Chinese)) | |
[5] | Stechlinski PG, Barton PI.Dependence of solutions of nonsmooth differential-algebraic equations on parameters.Journal of Differential Equations, 2017, 262(3): 2254-2285 |
[6] | Dhamacharoen A.Efficient numerical methods for solving differential algebraic equations.Journal of Applied Mathematics & Physics, 2016, 4(1): 1-9 |
[7] | Petzold L.Differential/algebraic equations are not ODE’S.Siam Journal on Scientific & Statistical Computing, 2012, 3(3): 367-384 |
[8] | Shampine LF, Reichelt MW, Kierzenka JA.Solving index-I DAEs in MATLAB and simulink.Siam Review, 1999, 41(3): 538-552 |
[9] | Gear CW, Petzold LR.ODE methods for the solution of differential /algebraic systems.Siam Journal on Numerical Analysis, 1984, 21(4): 716-728 |
[10] | Haddouni M, Acary V, Garreau S, et al.Comparison of several formulations and integration methods for the resolution of DAEs formulations in event-driven simulation of nonsmooth frictionless multibody dynamics.Multibody System Dynamics, 2017, 41(3): 201-231 |
[11] | Marques F, Souto A P, Flores P.On the constraints violation in forward dynamics of multibody systems.Multibody System Dynamics, 2016, 39(4): 1-35 |
[12] | Schweizer B, Lu D, Li P.Co-simulation method for solver coupling with algebraic constraints incorporating relaxation techniques.Multibody System Dynamics, 2016, 36(1): 1-36 |
[13] | 潘振宽, 赵维加, 洪嘉振等. 多体系统动力学微分/代数方程组数值方法. 力学进展, 1996, 26(1): 83-96 |
(Pan Zhenkuan, Zhao Weijia, Hong Jiazhen, et al.On numerical algorithms for differential/algebraic equations of motion of multibody system.Advances in Mechanics, 1996, 26(1): 26-40 (in Chinese)) | |
[14] | 袁新鼎. 刚性常微分方程初值问题的数值解法. 北京: 科学出版社, 1987 |
(Yuan Xinding.Numerical Methods for Solving Initial Value Problems of Stiff Ordinary Differential Equations. Beijing: Science Press, 1987 (in Chinese)) | |
[15] | 程正兴. 数值逼近与常微分方程数值解. 西安: 西安交通大学出版社, 2000 |
(Cheng Zhengxing.Numerical Approximation and Numerical Solution of Ordinary Differential Equation. Xi’an: Xi’an Jiaotong University Press, 2000 (in Chinese)) | |
[16] | Hairer E, Lubich C.Numerical Analysis of Ordinary Differential Equations. Berlin, Heidelberg: Springer 2015 |
[17] | Ibrahim Z, Nasir NM, Othman K, et al.Adaptive order of block backward differentiation formulas for stiff ODEs.Numerical Algebra, 2017, 7(1): 95-106 |
[18] | El-Zahar ER, Habib HM, Rashidi MM, et al.A comparison of explicit semi-analytical numerical integration methods for solving stiff ODE systems.American Journal of Applied Sciences, 2015, 12(5): 304-320 |
[19] | Ariel G, Engquist B, Tsai R.A multiscale method for highly oscillatory ordinary differential equations with resonance.Mathematics of Computation, 2009, 78(266): 929-956 |
[20] | Tokman M.Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods.Journal of Computational Physics, 2006, 213(2): 748-776 |
[21] | Meijaard JP.Application of Runge-Kutta-Rosenbrock methods to the analysis of flexible multibody systems.Multibody System Dynamics, 2003, 10(3): 263-288 |
[22] | Shabana AA, Hussein BA.A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: Application to multibody systems.Journal of Sound & Vibration, 2009, 327(3): 557-563 |
[23] | Yen J, Petzold L, Raha S.A time integration algorithm for flexible mechanism dynamics: the DAE α-method.Computer Methods in Applied Mechanics and Engineering, 1998, 158(3): 341-355 |
[24] | Arnold M, Brüls O.Convergence of the generalized-α, scheme for constrained mechanical systems.Multibody System Dynamics, 2007, 18(2): 185-202 |
[25] | 丁洁玉, 潘振宽. 多体系统动力学微分‒代数方程广义<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml184-0459-1879-50-4-863"><mml:mo>-</mml:mo><mml:mi>α</mml:mi></mml:math></inline-formula>投影法. 工程力学, 2013, 30(4): 380-384 |
(Ding Jieyu, Pan Zhenkuan. generalized<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml185-0459-1879-50-4-863"><mml:mo>-</mml:mo><mml:mi>α</mml:mi></mml:math></inline-formula> projection method for differential-algebraic equations of multibody dynamics.Engineering Mechanics, 2013, 30(4): 380-384 (in Chinese)) | |
[26] | 郭晛, 章定国, 陈思佳. Hilber-Hughes-Taylor<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml186-0459-1879-50-4-863"><mml:mo>-</mml:mo><mml:mi>α</mml:mi></mml:math></inline-formula> 法在接触约束多体系统动力学中的应用. 物理学报, 2017, 66(16): 144-154 |
(Guo Xian, Zhang Dingguo, Chen Sijia.Application of Hilber-Hughes-Taylor<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml187-0459-1879-50-4-863"><mml:mo>-</mml:mo><mml:mi>α</mml:mi></mml:math></inline-formula> method to dynamics of flexible multibody system with contact and constraint.Acta Physica Sinica, 2017, 66(16): 144-154 (in Chinese)) | |
[27] | 姚廷强, 迟毅林, 黄亚宇. 柔性多体系统动力学新型广义<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml188-0459-1879-50-4-863"><mml:mo>-</mml:mo><mml:mi>α</mml:mi></mml:math></inline-formula>数值分析方法. 机械工程学报, 2009, 45(10): 53-60 |
(Yao Tingqiang, Chi Yilin, Hu Yayu.New generalized-α algorithms for multibody dynamics.Journal of Mechanical Engineering, 2009, 45(10): 53-60 (in Chinese)) | |
[28] | 郭晛, 章定国. 柔性多体系统动力学典型数值积分方法的比较研究. 南京理工大学学报(自然科学版), 2016, 40(6): 726-733 |
(Guo Xian, Zhang Dingguo.Comparative study of typical numerical integration methods of flexible multi-body systems dynamics.Journal of Nanjing University of Science and Technology, 2016, 40(6): 726-733 (in Chinese)) | |
[29] | Banerjee A.Flexible Multibody Dynamics: Efficient Formulations and Applications. John Wiley & Sons, Inc., 2016 |
[30] | 洪嘉振. 计算多体系统动力学. 北京: 高等教育出版社, 1999 |
(Hong Jiazhen.Computational Dynamics of Multibody Systems. Beijing: Higher Education Press, 1999 (in Chinese)) | |
[31] | 齐朝晖. 多体系统动力学. 北京: 科学出版社, 2008 |
(Qi Zhaohui.Dynamics of Multibody Systems. Beijing: Science Press, 2008 (in Chinese)) | |
[32] | 张志刚, 齐朝晖, 吴志刚. 一种基于应变插值大变形梁单元的刚‒柔耦合动力学分析. 振动工程学报, 2015, 28(3): 337-344 |
(Zhang Zhigang, Qi Zhaohui, Wu Zhigang.Rigid-flexible dynamics analysis of a large deformation beam element based on interpolation of strains.Journal of Vibration Engineering, 2015, 28(3): 337-344 (in Chinese)) |
[1] | Qi Zhaohui. Recursive method for modeling flexible multibody systems with non-ideal constraints [J]. Chinese Journal of Theoretical and Applied Mechani, 2008, 40(5): 684-694. |
[2] | ,. PARAMETERS FOR FINITE ROTATIONAL TENSOR AND ITS APPLICATION IN MULTIBODY SYSTEMS [J]. Chinese Journal of Theoretical and Applied Mechani, 1998, 30(6): 711-718. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||