Chinese Journal of Theoretical and Applied Mechanics ›› 2018, Vol. 50 ›› Issue (4): 734-750.DOI: 10.6052/0459-1879-18-005
• Orginal Article • Previous Articles Next Articles
Cao Mengyuan, Jin Huabin, Shao Chuanping*()
Received:
2018-01-01
Accepted:
2018-01-01
Online:
2018-07-18
Published:
2018-08-17
Contact:
Shao Chuanping
CLC Number:
Cao Mengyuan, Jin Huabin, Shao Chuanping. THE SINGLE STRIP-INDUCED CHANGE OF 2P-MODE VORTEX SHEDDING IN THE WAKE OF A TRANSVERSELY OSCILLATING CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 734-750.
Add to citation manager EndNote|Ris|BibTeX
Mesh | Grid number | ||
---|---|---|---|
Mesh1 | 16 881 | 0.212 5 | 1.280 7 |
Mesh2 | 25 891 | 0.218 0 | 1.302 3 |
Mesh3 | 36 401 | 0.221 0 | 1.321 5 |
Mesh4 | 72 207 | 0.220 8 | 1.322 8 |
Table 1 Influence of mesh density on the numerical results of flow across a stationary cylinder at Re=855
Mesh | Grid number | ||
---|---|---|---|
Mesh1 | 16 881 | 0.212 5 | 1.280 7 |
Mesh2 | 25 891 | 0.218 0 | 1.302 3 |
Mesh3 | 36 401 | 0.221 0 | 1.321 5 |
Mesh4 | 72 207 | 0.220 8 | 1.322 8 |
Refs. | Ref.[34] | Ref.[35] | Ref.[36] | Ref.[37] | Present |
---|---|---|---|---|---|
(Num.) | (Num.) | (Num.) | (Exp.) | (Num.) | |
0.236 | 0.238 | 0.210 | 0.210 | 0.221 | |
1.440 | 1.200 | 1.330 | 1.100 | 1.321 |
Table 2 Comparisons with other authors’ results of flow across a stationary cylinder at Re=855
Refs. | Ref.[34] | Ref.[35] | Ref.[36] | Ref.[37] | Present |
---|---|---|---|---|---|
(Num.) | (Num.) | (Num.) | (Exp.) | (Num.) | |
0.236 | 0.238 | 0.210 | 0.210 | 0.221 | |
1.440 | 1.200 | 1.330 | 1.100 | 1.321 |
Fig. 3 Comparisons between numerical and experimental results of the wakes without and with a strip, Re=1 200, A/D=1.25, f_e D/V_∞=0.22 ||||(a) numerical vorticity field, without element;(b) experimental flow field, without element; (c) numerical vorticity field, the strip at X/D=0.8,Y/D=1.2; (d) experimental flow field, the strip at X/D=0.8,Y/D=1.2; (e) numerical vorticity field, the strip at X/D=1.0,Y/D=1.2; (f) experimental flow field, the strip at X/D=1.0,Y/D=1.2
Fig.4 Comparisons between experimental and numerical spectra of fluctuating velocities in the wakes without and with a strip element.||||Re=1 200, A/D=1.25, f_e D/V_∞=0.22 (a) Numerical spectrum, no strip; (b) Experimental spectrum, no strip; (c)Experimental spectrum, the strip at X/D=0.8,Y/D=1.2; (d) Numerical spectrum, the strip at X/D=0.8,Y/D=1.2
Fig. 5 Various modes of vortex shedding in the wake with an element on the lower side of the wake centerline, Re=1 200, A/D=1.25, f_e D/V_∞=0.22, b/D=0.32 ||||(a) P+S mode, upper side vortex-pair and lower side anti-clockwise single vortex, (b) P+S mode, upper side clockwise single vortex and lower side vortex-pair, (c) 2S mode, (d) P mode, (e) 2S+2S mode, (f) 2P mode, (g) P+T mode, (h) S+T mode, (i) 3S mode, (j) P+S+P mode
Fig. 6 The influence of single element:zones of vortex shedding modes on the plane of element position, Re=1 200, A/D=1.25, f_e D/V_∞=0.22, element width b/D=0.32
Fig. 8 Contours of peak spectrum ratio P/P_0 on the plane of element position (X/D,Y/D), where P and P_0 are respectively the maximum values in 8-points averaged power spectrum of fluctuating velocity in the wakes with and without an element, Re=1 200, A/D=1.25, f_e D/V_∞=0.22,b/D=0.32
Fig. 10 Sketch of 2P mode vortex shedding generation in the wake without strip element ||||(a) Clock-wise vortex V_A on the upper side, (b) Anti-clock-wise vortex V_B on the upper side, (c) Anti-clock-wise vortex V_D on the lower side, (d) Clock-wise vortex V_E on the lower side
Fig. 11 Sketch of P+S+P mode vortex shedding generation in the strip disturbed wake ||||(a) The single vortex S=V_C in the middle, (b) Anti-clockwise vortex V_D on the lower side, (c) Clockwise vortex V_E on the lower side, (d) Generation of the vortices in a cycle
Fig. 12 Sketch of S+T mode vortex generation in the strip disturbed wake ||||(a) The anti-clock-wise vortex V_B and V_D on the lower side, (b) The clock-wise vortex V_E on the lower side, (c) The clock-wise vortex V_A on the upper side and the earlier formed vortices on the lower side
Fig. 13 Generation of the vortices of mode 2S+2S in the strip disturbed wake ||||(a) Lower side clockwise vortex, (b) Lower side anti-clockwise vortex, (c) Upper side clockwise vortex, (d) Upper side anti-clockwise vortex
Fig.15 The effect of the strip on 2S mode vortex generation ||||(a) The strip blocks the downstream movement of anti-clock-wise vortex VD, and the induction of VD delays the formation of vortex VE, (b) The formation of 2S mode vortex shedding on the upper side, and the vanishing of vortex VD on the lower side
Fig. 16 The strip effect on P+S mode vortex generation ||||(a) Stream-wise shear flow enhances the anti-clock-wise vortex and weakens the clock-wise vortex on the lower side, (b) The formation of the vortex-pair on the upper side and the formation of single vortex on the lower side
[1] | Williamson CHK, Govardhan R.A brief review of recent results in vortex-induced vibrations. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 713-735 |
[2] | Roshko A.Perspectives on bluff body aerodynamics. Journal of wind Engineering and Industrial Aerodynamics, 1993, 49(1-3): 79-100 |
[3] | Blevens RD.The effect of sound on vortex shedding from cylinders. Journal of Fluid Mechanics, 1985, 161: 217-237 |
[4] | You D, Choi H, Choi M-R, et al.Control of flow induced noise behind a circular cylinder using splitter plates. AIAA Journal, 1998, 36(11): 1961-1 967 |
[5] | Sarpkaya T.Vortex-induced oscillations. Transactions of ASME Journal of Applied Mechanics, 1979, 46: 241-258 |
[6] | Sarpkaya T.A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 2004, 19: 389-447 |
[7] | Bearman PW, Currie IG.Pressure-fluctuation measurements on an oscillating circular cylinder. Journal of Fluid Mechanics, 1979, 91(4): 661-677 |
[8] | Bearman PW.Vortex shedding from oscillating bluff bodies. Annual Review of Fluid Mechanics, 1984, 16: 195-222 |
[9] | 何长江,段忠东. 二维圆柱涡激振动的数值模拟. 海洋工程,2008,26(1): 57-63 |
(He Changjiang, Duan Zhongdong.Numerical simulation of vortex-induced vibration on 2D cylinders. Ocean Engineering, 2008, 26(1): 57-63 (in Chinese)) | |
[10] | 黄旭东, 张海, 王雪松. 海洋立管涡激振动的研究现状、热点与展望. 海洋学研究, 2009, 27(4): 95-101 |
(Huang Xudong, Zhang Hai, Wang Xuesong.An overview on the study of vortex-induced vibration of marine risers. Journal of Marine Sciences, 2009, 27(4): 95-101 (in Chinese)) | |
[11] | Carberry J, Sheridan J, Rockwell D.Controlled oscillations of a cylinder: Forces and wake modes. Journal of Fluid Mechanics, 2005, 538: 31-69 |
[12] | Khalak A, Williamson CHK.Motions, forces, and mode transitions in vortex-induced vibrations at low mass damping. Journal of Fluids and Structures, 1999, 13: 813-851 |
[13] | Stewart BE, Leontini JS, Hourigan K, et al.Vortex wake and energy transitions of an oscillating cylinder at low Reynolds number//15th Australasian Fluid Mechanics Conference, The University of Sydney, Sydney, Australia, 13-17 December 2004 |
[14] | Hover FS, Techet AH, Triantafyllou MS.Forces on oscillating uniform and tapered cylinders in cross flow. Journal of Fluid Mechanics, 1998, 363: 97-114 |
[15] | Ongoren A, Rockwell D.Flow structure from an oscillating cylinder. Part 1 Mechanisms of phase shift and recovery in the near wake. Journal of Fluid Mechanics, 1988, 191: 197-223 |
[16] | Ongoren A, Rockwell D.Flow structure from an oscillating cylinder. Part 2 Mode competition in the near wake. Journal of Fluid Mechanics, 1988, 191: 225-245 |
[17] | 宋振华,段梦兰. 海洋立管横流向与双流向涡激振动研究. 石油机械,2016, 44(7): 65-69,75 |
(Song Zhenhua, Duan Menglan.Study on the 1-DOF and 2-DOF VIV of marine riser. China Petroleum Machinery, 2016, 44(7): 65-69,75 (in Chinese)) | |
[18] | Williamson CHK, Roshko A.Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 1988, 2(4): 355-381 |
[19] | Huera-Huarte FJ, Bangash ZA, Gonzalez LM.Towing tank experiements on the vortex-induced vibrations of low mass ratio long flexible cylinders. Journal of fluids and Structures, 2014, 48: 81-92 |
[20] | 陈东阳, Abbas LK, 王国平等. 复合材料立管涡激振动数值模拟. 上海交通大学学报,2017, 51(4): 495-503 |
(Chen Dongyang, Abbas LK, Wang Guoping, et al.Numerical calculations of vortex-induced vibration of composite riser. Journal of Shanghai Jiao Tong University, 2017, 51(4): 495-503(in Chinese)) | |
[21] | Zdravkovich MM.Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding. Journal of Wind Engineering and Industrial Aerodynamics, 1981, 7: 145-189 |
[22] | Sumer BM, Fredsφe H.Hydrodynamics around Cylindrical Structures. Singapore: World Scientific, 1981 |
[23] | Gad-el-Hak M. Flow Control, Passive, Active and Reactive Flow Management. Cambridge: Cambridge University Press, 2000 |
[24] | Feng LH, Wang JJ.Modification of a circular cylinder wake with synthetic jet: Vortex shedding modes and mechanism. European Journal of Mechanics B/Fluids, 2014, 43: 14-32 |
[25] | Feng LH, Wang JJ.Circular cylinder vortex-synchronization control with a synthetic jet positioned at the real stagnation point. Journal of Fluid Mechanics, 2010, 662: 232-259 |
[26] | Shi LL, Liu YZ, Sung HJ.On the wake with and without vortex shedding suppression behind a two-dimensional square cylinder in proximity to a plane wall. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98: 492-503 |
[27] | 吴浩, 孙大鹏. 深海立管涡激振动被动抑制措施的研究. 中国海洋平台, 2009, 24(4): 1-8 |
(Wu Hao, Sun Dapeng.Study on suppression measures for vortex-induced vibration of deep water risers. China Offshore Platform, 2009, 24(4): 1-8 (in Chinese)) | |
[28] | 宋吉宁,吕林,张建侨等. 三根附属控制杆对海洋立管涡激振动抑制作用实验研究. 海洋工程,2009, 27(3): 23-29 |
(Song Jining, Lü Lin, Zhang Jianqiao, et al.Experimental investigation of suppression of vortex-induced vibration of marine risers by three control rods. The Ocean Engineering, 2009, 27(3): 23-29 (in Chinese)) | |
[29] | 徐泉. 大跨度桥梁涡激振动及其气动减振措施研究. [硕士论文]. 成都:西南交通大学, 2007 |
(Xu Quan.Study on vortex-induced vibration of large span bridge and its aerodynamic reduction measures. [Master Thesis]. Chengdu: South West Jiao Tong University, 2007 (in Chinese)) | |
[30] | 周建龙. 桥梁结构涡激振动及其控制措施. [硕士论文].西安:长安大学,2010 |
(Zhou Jianlong.Vortex-induced vibration of bridge structures and its control. [Master Thesis]. Xi’an: Chang-An University, 2010 (in Chinese)) | |
[31] | Shao CP, Wei QD.Control of vortex shedding from a square cylinder. AIAA Journal, 2008, 46(2): 397-407 |
[32] | 邵传平. 钝体尾流控制机理及方法研究进展.力学进展, 2008, 38(3): 314-328 |
(Shao Chuanping.Advances in the study of methods and mechanism of bluff body wake control. Advances in Mechanics, 2008, 38(3): 314-328 (in Chinese)) | |
[33] | 邵传平,陈野军,王赛等. 流向振荡柱体尾流控制研究进展. 力学进展,2014,44:201405 |
(Shao Chuanping, Chen Yejun, Wang Sai, et al.Advances in the control of wakes behind an in-line oscillating cylinder. Advances in Mechanics, 2014, 44: 201405 (in Chinese)) | |
[34] | Lecinte Y, Piquet J.Flow structure in the wake of an oscillating cylinder. Transactions of ASME, Journal of Fluids Engineering, 1986, 111: 139-149 |
[35] | Zhang JF, Dalton C.Interaction of a steady approach flow and a circular cylinder undergoing forced oscillation. Transactions of ASME, Journal of Fluids Engineering, 1997, 119: 802-813 |
[36] | Liu S,Fu S.Regimes of vortex shedding from an in-line oscillating circular cylinder in the uniform flow. Acta Mechanica Sinica, 2003, 19(2): 118-126 |
[37] | Ongoren A, Rockwell D.Flow structure from an oscillating cylinder, Part 2. Mode competition in the near wake. Journal of Fluid Mechanics, 1988, 191: 225-245 |
[38] | Williamson CHK, Jauvtis N.A high-amplitude 2T mode of vortex-induced vibration for a light body in XY motion. European Journal of Mechanics B/Fluids, 2004, 23: 107-114 |
[39] | Roshko A.On the wake and drag of bluff bodies. Journal of Aeronautical Science, 1955, 22: 124-132 |
[40] | Wille R.Generation of oscillatory flows//Naudascher E ed. Flow Induced Structural Vibration, Berlin: Springer, 1974: 1-16 |
[41] | Gerrard JH.The mechanics of the formation region of vortices behind bluff bodies. Journal of Fluid Mechanics, 1966, 25: 401-413 |
[42] | Hammond D, Redekopp L.Global dynamics of symmetric and asymmetric wakes. Journal of Fluid Mechanics, 1997, 331: 236-260 |
[43] | Monkewitz PA, Nuygen LN.Absolute instability in the near-wake of two-dimensional bluff bodies. Journal of Fluids and Structures, 1987, 1: 165-184 |
[44] | Monkewitz PA, Huerre P, Chomaz JM.Global linear stability analysis of weakly non-parallel shear flows. Journal of Fluid Mechanics, 1993, 251: 1-20 |
[45] | Huerre P, Monkewitz PA.Local and global instabilities in spatially developing flows. Annual Review of Fluid Mechanics, 1990, 22: 473-537 |
[1] | Ding Sansan, Chen Dawei, Liu Jiali. RESEARCH, DEVELOPMENT AND PROSPECT OF CHINA HIGH-SPEED TRAIN 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 35-50. |
[2] | Huang Guangjing, Dai Yuting, Yang Chao. PLASMA-BASED FLOW CONTROL ON PITCHING AIRFOIL AT LOW REYNOLDS NUMBER 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 136-155. |
[3] | Li Chaoxin, Wu Xiaogang, Sun Yuqin, Qin Yingze, Duan Wangping, Zhang Meizhen, Wang Yanqin, Chen Weiyi, Wei Xiaochun. MECHANOTRANSDUCTION OF THE CELL AND ITS PRIMARY CILIUM IN THE MICROFLUIDIC CHANNEL 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 260-277. |
[4] | Zhang Weiguo, Shi Zheyu, Li Guoqiang, Yang Yongdong, Huang Minqi, Bai Yunmao. NUMERICAL STUDY ON DYNAMIC STALL FLOW CONTROL FOR WIND TURBINE AIRFOIL USING PLASMA ACTUATOR 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689. |
[5] | Zhang Wanjie, Niu Jiangchuan, Shen Yongjun, Yang Shaopu, Wang Li. DYNAMICAL ANALYSIS ON A KIND OF SEMI-ACTIVE VIBRATION ISOLATION SYSTEMS WITH DAMPING CONTROL 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1743-1754. |
[6] | Sun Jie, Sun Jun, Liu Fucheng, Zhu Dongfang, Huang Jing. DYNAMICS AND CONTROL OF RIGID-FLEXIBLE COUPLING FLEXIBLE SPACECRAFT WITH JOINT CLEARANCE1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1569-1580. |
[7] | Song Huixin, Jin Lei. DYNAMIC MODELING AND STABILITY CONTROL OF FOLDING WING AIRCRAFT 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1548-1559. |
[8] | Hu Yuandong, Lu Zhengliang, Liao Wenhe. ATTITUDE CONTROL TECHNOLOGY FOR MASS MOMENT NANO-SATELLITE IN LOW EARTH ORBIT 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1599-1609. |
[9] | Zhu Shihui, Zhou Zhen, Lü Jing, Wang Qi. KINETICS ANALYSIS OF NON-SMOOTH VIBRATION-DRIVEN SYSTEM WITH THREE-PHASE CONTROL 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1755-1764. |
[10] | Fang Wuyi,Guo Xian,Li Liang,Zhang Dingguo. DYNAMICS MODELING, SIMULATION, AND CONTROL OF ROBOTS WITH FLEXIBLE JOINTS AND FLEXIBLE LINKS$^{\bf 1)}$ [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 965-974. |
[11] | Zhang Yuling,Gu Yongxia,Zhao Jieliang,Yan Shaoze. RESEARCH ON VIBRATION CHARACTERISTICS OF THE MANIPULATOR END UNDER ACTIVE CONTROL OF ARM STIFFNESS$^{\bf 1)}$ [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 985-995. |
[12] | Ai Haiping,Chen Li. BUFFER AND COMPLIANT DYNAMIC SURFACE CONTROL OF SPACE ROBOT CAPTURING SATELLITE BASED ON COMPLIANT MECHANISM$^{\bf 1)}$ [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 975-984. |
[13] | An Xinlei,Zhang Li. MULTI-MODE OSCILLATIONS AND HAMILTON ENERGY FEEDBACK CONTROL OF A CLASS OF MEMRISTOR NEURON$^{\bf 1)}$ [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1174-1188. |
[14] | Chen Ju,Guo Yongxin,Liu Shixing,$\boxed{\hbox{MeiFengxiang}}$ . DYNAMICAL CONTROL OF STABILITY FOR BIRKHOFFIAN SYSTEM$^{\bf 1)}$ [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 928-931. |
[15] | Li Haibo,Liu Shixing,Song Haiyan,Liang Lifu. NON-CONSERVATIVE NONLINEAR RIGID-ELASTIC-LIQUID- CONTROL COUPLING ANALYTICAL DYNAMICS AND ITS APPLICATIONS$^{\bf 1)}$ [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 932-944. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||