Chinese Journal of Theoretical and Applied Mechanics ›› 2019, Vol. 51 ›› Issue (1): 228-236.DOI: 10.60520459-1879-18-223
• Dynamics, Vibration and Control • Previous Articles Next Articles
Zhang Yi, Han Xiujing2)(), Bi Qinsheng
Online:
2019-01-18
Published:
2019-03-01
CLC Number:
Zhang Yi, Han Xiujing, Bi Qinsheng. SERIES-MODE PITCHFORK-HYSTERESIS BURSTING OSCILLATIONS AND THEIR DYNAMICAL MECHANISMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 228-236.
Fig. 1 The pitchfork-hysteresis bursting oscillations. The system parameters are fixed at $\delta = 0.6$,$\beta _1 = 2.0$,$\beta _2 = 0$,\\ $\omega _1 = 0.01$ and $\omega _2 = 0.01$...
[1] | Zhabotinsky AM.Periodical process of oxidation of malonic acid solution. Biophysics, 1964, 9: 306-311 |
[2] | Vanag VK, Zhabotinsky AM, Epstein IR.Oscillatory clusters in the periodically illuminated, spatially extended Belousov-Zhabotinsky reaction. Phys. Rev. Lett, 2001, 86(3): 552-555 |
[3] | Winfree AT.The prehistory of the Belousov-Zhabotinsky oscillator. J. Chem. Educ, 1984, 61(8): 661-663 |
[4] | J Rinzel.Discussion: Electrical excitability of cells, theory and experiment: Review of the Hodgkin-Huxley foundation and an update. Bull. Math. Biol, 1990, 52(1-2): 3-23 |
[5] | Izhikevich EM.Neural excitability, spiking and bursting. Int. [J]. Bifurcation Chaos, 2000, 10(6): 1171-1266 |
[6] | Rinzel J.Ordinary and Partial Differential Equations. Berlin:Springer-Verlag , 1985: 304-316 |
[7] | Maesschalck P De, Kutafina E, Popovi N. Sector-delayed-Hopf-type mixed-mode oscillations in a prototypical three-time-scale model. Appl. Math. Comput, 2016, 273: 337-352 |
[8] | Ruschel S, Yanchuk S.Chaotic bursting in semiconductor lasers. Chaos, 2017, 27: 114313-114319 |
[9] | Premraj D, Suresh K, Banerjee T, et al.An experimental study of slow passage through Hopf and pitchfork bifurcations in a parametrically driven nonlinear oscillator. Commun. Nonlinear Sci. Numer. Si, 2016, 37: 212-221 |
[10] | Zhao SB, Yang LJ, Liu T, et al.Analysis of plasma oscillations by electrical detection in Nd:YAG laser welding. J Mater. Process. Tech, 2017, 249: 479-489 |
[11] | Wilk G, Wlodarczyk Z.Temperature oscillations and sound waves in hadronic matter. Physica A, 2017, 486: 579-586 |
[12] | 古华光. 神经系统信息处理和异常功能的复杂动力学. 力学学报, 2017, 49(2): 410-420 |
(Gu Huaguang.Complex dynamics of the nervous system for information processing and abnormal functions. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 410-420 (in Chinese)) | |
[13] | Andrew R, Esther W, Martin W, et al. Mixed mode oscillations in a conceptual climate model. Physica D, 2015, 292-293: 70-83 |
[14] | John HG Macdonald, Guy L Larose.Two-degree-of-freedom inclined cable galloping-Part 1: General formulation and solution for perfectly tuned system. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 291-307 |
[15] | Yang SC, Hong HP.Nonlinear inelastic responses of transmission tower-line system under downburst wind. Eng. Struct, 2016, 123: 490-500 |
[16] | 陈章耀, 陈亚光, 毕勤胜. 由多平衡态快子系统所诱发的簇发振荡及机理. 力学学报, 2015, 47(4): 699-706 |
(Chen Zhangyao, Chen Yaguang, Bi Qinsheng.Bursting oscillations as well as the bifurcation mechanism induced by fast subsystem with multiple balances. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 699-706 (in Chinese)) | |
[17] | 邢雅清, 陈小可, 张正娣等. 多平衡态下簇发振荡产生机理及吸引子结构分析. 物理学报, 2016, 65(9): 09050-1-9 |
(Xing Yaqing, Chen Xiaoke, Zhang Zhengdi, et al. Mechanism of bursting oscillations with multiple equilibrium states and the analysis of the structures of the attractors. Acta Phys Sin, 2016, 65(9): 09050-1-9 (in Chinese)) | |
[18] | Yu Y, Han XJ, Zhang C, et al.Mixed-mode oscillations in a nonlinear time delay oscillator with time varying parameters. Commun. Nonlinear Sci. Numer. Si, 2017, 47: 23-34 |
[19] | 吴天一, 陈小可, 张正娣等. 非对称型簇发振荡吸引子结构及其机理分析. 物理学报, 2017, 66(11): 35-45 (Wu Tianyi, Chen Xiaoke, Zhang Zhengdi, et al. Structures of the asymmetrical bursting oscillation attractors and their bifurcation mechanisms. Acta Phys Sin, 2017, 66(11): 35-45 (in Chinese)) |
[20] | Matja$\check{z}$ P, Marko M. Different types of bursting calcium oscillations in non-excitable cells. Chaos. Soliton. Fract, 2003, 18: 759-773 |
[21] | Han XJ, Jiang B, Bi QS.Symmetric bursting of focus-focus type in the controlled Lorenz system with two time scales. Phys. Lett. A, 2009, 373: 3643-3649 |
[22] | 陈章耀, 张晓芳, 毕勤胜. 周期激励下Hartley模型的簇发及分岔机制. 力学学报, 2010, 42(4): 765-773 |
(Chen Zhangyao, Zhang Xiaofang, Bi Qinsheng.Bursting phenomena as well as the bifurcation mechanism in periodically excited Hartley model. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 765-773 (in Chinese)) | |
[23] | Han XJ, Xia FB, Ji P, et al.Hopf-bifurcation-delay-induced bursting patterns in a modified circuit system. Commun. Nonlinear Sci. Numer. Si, 2016, 36: 517-527 |
[24] | 郑远广, 黄承代, 王在华. 反馈时滞对van der Pol振子张弛振荡的影响. 力学学报, 2012, 44(1): 148-157 |
(Zheng Yuanguang, Huang Chengdai, Wang Zaihua.Delay effect on the relaxation oscillations of a van der Pol oscillator with delayed feedback. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 148-157 (in Chinese)) | |
[25] | Nicolò P, Mauro S.A heterogenous Cournot duopoly with delay dynamics: Hopf bifurcations and stability switching curves. Commun. Nonlinear Sci. Numer.Si, 2018, 58: 36-46 |
[26] | Wang HX, Zheng YH, Lu QS.Stability and bifurcation analysis in the coupled HR neurons with delayed synaptic connection. Nonlinear. Dyn, 2017, 88: 2091-2100 |
[27] | Han XJ, Yu Y, Zhang C, et al.Turnover of hysteresis determines novel bursting in Duffing system with multiple-frequency external forcings. Int. [J]. Non-Linear Mech, 2017, 89: 69-74 |
[28] | Ivana K, Michael JB.The Duffing Equation: Nonlinear Oscillators and Their Behaviour. United Kingdom: John Wiley & Sons Ltd, 2011 |
[29] | Rafal R, Andrezj W, Krzysztof K, et al.Dynamics of a time delayed Duffing oscillator. Int. [J]. Non-Linear Mech, 2014, 65: 98-106 |
[30] | Han XJ, Bi QS, Zhang C, et al. Delayed bifurcations to repetitive spiking and classification of delay-induced bursting. Int. J. Bifurcation Chaos, 2014, 24(7): 1450098-1-23 |
[31] | Han XJ, Bi QS, Ji P, et al. Fast-slow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies. Phys. Rev. E, 2015, 92: 012911-1-12 |
[32] | GJM Marée.Slow passage through a pitchfork bifurcation. Slam J. Appl.Math, 1996, 56(3): 889-918 |
[33] | Berglund N.Adiabatic dynamical systems and hysteresis. [PhD Thesis].Lausanne Switzerland: Institut de Physique Théorique EPFL, 1998 |
[34] | Han XJ, Bi QS.Bursting oscillations in Duffing's equation with slowly changing external forcing. Commun. Nonlinear Sci. Numer. Si, 2011, 16: 4146-4152 |
[1] | Chen Yani, Meng Wenjing, Qian Youhua. FIXED POINT CHAOS AND FOLD/FOLD BURSTING OF A CLASS OF DUFFING SYSTEMS AND THE MECHANISM ANALYSIS 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1475-1484. |
[2] | Mengke Wei, Xiujing Han, Xiaofang Zhang, Qinsheng Bi. POSITIVE AND NEGATIVE PULSE-SHAPED EXPLOSION AS WELL AS BURSTING OSCILLATIONS INDUCED BY IT1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 904-911. |
[3] | Chen Zhenyang, Han Xiujing, Bi Qinsheng. COMPLEX RELAXATION OSCILLATION TRIGGERED BY BOUNDARY CRISIS IN THE DISCRETE DUFFING MAP [J]. Chinese Journal of Theoretical and Applied Mechani, 2017, 49(6): 1380-1389. |
[4] | Chen Zhenyang, Han Xiujing, Bi Qinsheng. COMPLEX BURSTING OSCILLATION STRUCTURES IN A TWO-DIMENSIONAL NON-AUTONOMOUS DISCRETE SYSTEM [J]. Chinese Journal of Theoretical and Applied Mechani, 2017, 49(1): 165-174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||