1 朱位秋. 随机振动. 北京: 科学出版社, 1998 (Zhu Weiqiu. Random Vibration. Beijing: Science Press, 1998 (in Chinese)) 
2 Hu Z, Cheng L, Berne BJ. First passage time distribution in stochastic processes with moving and static absorbing boundaries with application to biological rupture experiments. it Journal of Chemical Physics, 2010,133 (3): 034105
3 Zhou Y, Zhang C, Stell G, et al. Temperature dependence of the distribution of the first passage time: results from discontinuous molecular dynamics simulations of an all-atom model of the second β-hairpin fragment of protein G. it Journal of the American Chemical Society, 2003, 125(20): 6300-6305 
4 Sirovich L, Knight B. Spiking neurons and the first passage problem. it Neural Computation, 2011, 23(7): 1675-1703 
5 Bakshi G, Panayotov G. First-passage probability, jump models, and intra-horizon risk. it Journal of Financial Economics, 2010, 95(1): 20-40 
6 Bharucha-Reid AT. Elements of Markov Pocesses and Their Applications. New York: McGraw-Hill, 1960
7 Cox DR, Miller HD. The Theory of Stochastic Processes. New York: Chapman and Hall, 1965 
8 Labou, M. Solution of the first-passage problem by advanced Monte Carlo simulation technique. it Strength of Materials, 2003, 35(6): 588-593 
9 Roberts JB. First-passage probabilities for randomly excited systems: diffusion methods. it Probabilistic Engineering Mechanics, 1986, 1(2):66-81 
10 Zhu WQ, Deng ML, Huang ZL. First-passage failure of quasi-integrable Hamiltonian systems. it ASME-Journal of Applied Mechanics, 2002,69(3): 274-282 
11 Zhu WQ, Huang ZL, Deng ML. First-passage failure and its feedback minimization of quasi partially integrable Hamiltonian systems. it International Journal of Non-Linear Mechanics, 2003, 38 (8):1133-1148 
12 Gan CB, Zhu WQ. First-passage failure of quasi-nonintegrable hamiltonian systems. it International Journal of Non-Linear Mechanics, 2001,36(2): 209-220 
13 Li W, Xu W, Zhao JF, et al. First-passage problem for strong nonlinear stochastic dynamical systems. it Chaos Solitons & Fractals, 2006,28(2): 414-421 
14 徐伟, 李伟, 靳艳飞等. 耦合Duffing-van der Pol系统的首次穿越问题. 力学学报,2005, 37(5): 620-626 (Xu Wei, Li Wei, Jin Yanfei, et al. First-passage problem for coupled Duffing-van der Pol systems. it Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(5): 620-626 (in Chinese))
15 Chen LC, Zhu WQ. First passage failure of quasi-partial integrable generalized Hamiltonian systems. it International Journal of Non-Linear Mechanics, 2010, 45(1): 56-62 
16 谭建国, 王洪礼, 葛根 等. 二元机翼模型在随机参数激励下的首次穿越问题. 天津大学学报, 2009, 42(7): 581-585 (Tan Jianguo, Wang Hongli, Ge Gen, et al. First-passage of a two dimensional airfoil model subject to stochastic parametric excitation. it Joumal of Tianjin University, 2009, 42(7):581-585 (in Chinese))
17 胡亚才,范利武,田甜等.工程中温度随机变化的首次穿越模型. 浙江大学学报 (工学版), 2006, 40(10): 1811-1814 (Hu Yacai, Fan Liwu, Tian Tian, et al. First-passage model for stochastic temperature variation in engineering. it Journal of Zhejiang University (it Engineering Science), 2006,40(10): 1811-1814 (in Chinese))
18 Wang YG, Huang ZL, Tan JH. First-passage probability of nonlinear ship rolling in random seas. it Journal of Ship Mechanics, 2008, 12(6):870-879
19 Gammaitoni L, Hanggi P, Jung P, et al. Stochastic resonance. it Reviews of Modern Physics, 1998, 70(1): 223-287 
20 Huang ZL, Zhu ZQ, Jin XL. First-passage time of an inverted pendulum subject to high frequency harmonic and Gaussian white noise excitations. it Probabilistic Engineering Mechanics, 2009, 24(2): 128-134 
21 Zhu WQ, Wu YJ. First-passage time of Duffing oscillator under combined harmonic and white-noise excitations. it Nonlinear Dynamics, 2003,32(3): 291-305 
22 Wu YJ, Luo M, Zhu WQ. First-passage failure of strongly nonlinear oscillators under combined harmonic and real noise excitations. it Archive of Applied Mechanics, 2008, 78(7): 501-515 
23 Cheung YK, Xu Z. Internal resonance of strongly non-linear autonomous vibrating systems with many degrees of freedom. it Journal of Sound and Vibration, 1995, 180(2): 229-238 
24 Stratonovitch RL. Topics in the Theory of Random Noise. New York: Gordon and Breach, 1963 
25 Khasminskii RZ.A limit theorem for the solutions of differential equations with random right-hand sides.it Theory of Probability and Its Applications,1966, 11(3): 390-406 
26 朱位秋. 非线性随机动力学与控制——Hamilton理论体系框架. 北京: 科学出版社, 2003 (Zhu Weiqiu. Nonlinear Stochastic Dynamics and Control——Hamilton Theoretical Framework. Beijing: Science Press, 2003 (in Chinese))
27 Huang ZL, Zhu WQ. Stochastic averaging of quasi-integrable Hamiltonian systems under combined harmonic and white noise excitations. it International Journal of Non-Linear Mechanics, 2004, 39(9): 1421-1434 
28 陆金甫, 关治. 偏微分方程数值解法. 北京: 清华大学出版社, 2004 (Lu Jinfu, Guan Zhi. Numerical Methods for Partial Differential Equations. Beijing: Tsinghua University Press, 2004 (in Chinese)) 
|