[1] |
Ibragimov NH. A Practical Course in Differential Equations and Mathematical Modelling. Beijing: Higher Education Press, 2009
|
[2] |
Marsden JE, Ratiu TS. Introduction to Mechanics and Symmetry. 2$^{nd}$ Edition. New York: Springer-Verlag, 1999
|
[3] |
梅凤翔, 吴惠彬, 李彦敏 等. Birkhoff 力学的研究进展. 力学学报, 2016,48(2):263-268
|
|
( Mei Fengxiang, Wu Huibin, Li Yanmin, et al. Advances in research on Birkhoffian mechanics. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(2):263-268 (in Chinese))
|
[4] |
Olver PJ. Applications of Lie Groups to Differential Equations. New York: Springer-Verlag, 1986
|
[5] |
Mei FX. Lie symmetries and conserved quantities of constrained mechanical systems. Acta Mechanica, 2000,141(3-4):135-148
|
[6] |
Luo SK, Li ZJ, Peng W, et al. A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems. Acta Mechanica, 2013,224(1):71-84
|
[7] |
Zhai XH, Zhang Y. Lie symmetry analysis on time scales and its application on mechanical systems. Journal of Vibration and Control, 2019,25(3):581-592
|
[8] |
Noether AE. Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 1918,KI:235-257
|
[9] |
梅凤翔. 李群和李代数对约束力学系统的应用. 北京: 科学出版社, 1999
|
|
( Mei Fengxiang. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Beijing: Science Press, 1999 (in Chinese))
|
[10] |
梅凤翔. 关于Noether定理——分析力学札记之三十. 力学与实践, 2020,42(1):66-74
|
|
( Mei Fengxiang. On the Noether's theorem. Mechanics in Engineering, 2020,42(1):66-74 (in Chinese))
DOI
URL
|
[11] |
张毅. Caputo 导数下分数阶 Birkhoff 系统的准对称性与分数阶 Noether 定理. 力学学报, 2017,49(3):693-702
|
|
( Zhang Yi. Quasi-symmetry and Noether's theorem for fractional Birkhoffian systems in terms of Caputo derivatives. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):693-702 (in Chinese))
|
[12] |
张毅. 相空间中非保守系统的 Herglotz 广义变分原理及其 Noether 定理. 力学学报, 2016,48(6):1382-1389
|
|
( Zhang Yi. Generalized variational principle of Herglotz type for nonconservative system in phase space and Noether's theorem. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(6):1382-1389 (in Chinese))
DOI
URL
|
[13] |
Song CJ, Zhang Y. Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications. Fractional Calculus & Applied Analysis, 2018,21(2):509-526
|
[14] |
梅凤翔. 约束力学系统的对称性与守恒量. 北京: 北京理工大学出版社, 2004
|
|
( Mei Fengxiang. Symmetries and Conserved Quantities of Constrained Mechanical Systems. Beijing: Institute of Technology Press, 2004 (in Chinese))
|
[15] |
Zhai XH, Zhang Y. Mei symmetry of time-scales Euler-Lagrange equations and its relation to Noether symmetry. Acta Physica Polonica A, 2019,136(3):439-443
|
[16] |
Luo SK, Yang MJ, Zhang XT, et al. Basic theory of fractional Mei symmetrical perturbation and its application. Acta Mechanica, 2018,229(4):1833-1848
|
[17] |
Zhai XH, Zhang Y. Mei symmetry and new conserved quantities of time-scale Birkhoff's equations. Complexity, 2020,2020:1691760
|
[18] |
Bluman GW, Anco SC. Symmetry and Integration Methods for Differential Equations. New York: Springer-Verlag, 2002
|
[19] |
Cai PP, Fu JL, Guo YX. Lie symmetries and conserved quantities of the constraint mechanical systems on time scales. Reports on Mathematical Physics, 2017,79(3):279-296
|
[20] |
Jiang WA, Xia LL. Symmetry and conserved quantities for non-material volumes. Acta Mechanica, 2018,229(4):1773-1781
|
[21] |
Zhang Y, Zhai XH. Perturbation to Lie symmetry and adiabatic invariants for Birkhoffian systems on time scales. Communication in Nonlinear Science and Numerical Simulation, 2019,75:251-261
|
[22] |
Hu WP, Wang Z, Zhao YP, et al. Symmetry breaking of infinite-dimensional dynamic system. Applied Mathematics Letters, 2020,103:106207
|
[23] |
Govinder KS, Heil TG, Uzer T. Approximate Noether symmetries. Physics Letters A, 1998,240(3):127-131
|
[24] |
Denman HH. Approximate invariants and Lagrangians for autonomous, weakly non-linear systems. International Journal of Non-Linear Mechanics, 1994,29(3):409-419
|
[25] |
Johnpillai AG, Kara AH, Mahomed FM. Approximate Noether-type symmetries and conservation laws via partial Lagrangians for PDEs with a small parameter. Journal of Computational and Applied Mathematics, 2009,223:508-518
|
[26] |
Naeem I, Mahomed FM. Approximate partial Noether operators and first integrals for coupled nonlinear oscillators. Nonlinear Dynamics, 2009,57:303-311
|
[27] |
楼智美, 梅凤翔, 陈子栋. 弱非线性耦合二维各向异性谐振子的一阶近似 Lie 对称性与近似守恒量. 物理学报, 2012,61(11):110204
|
|
( Lou Zhimei, Mei Fengxiang, Chen Zidong. The first-order approximate Lie symmetries and approximate conserved quantities of the weak nonlinear coupled two-dimensional anisotropic harmonic oscillator. Acta Physica Sinica, 2012,61(11):110204 (in Chinese))
|
[28] |
楼智美, 王元斌, 谢志堃. 典型微扰力学系统的近似 Lie 对称性、近似 Noether 对称性和近似 Mei 对称性. 北京大学学报 (自然科学版), 2016,52(4):681-686
|
|
( Lou Zhimei, Wang Yuanbin, Xie Zhikun. Approximate Lie symmetries, approximate Noether symmetries and approximate Mei symmetries of typical perturbed mechanical system. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016,52(4):681-686 (in Chinese))
|
[29] |
Naz R, Naeem I. Generalization of approximate partial Noether approach in phase space. Nonlinear Dynamics, 2017,88:735-748
|
[30] |
Naz R, Naeem I. The approximate Noether symmetries and approximate first integrals for the approximate Hamiltonian systems. Nonlinear Dynamics, 2019,96:2225-2239
|
[31] |
Jiang WA, Xia LL. Approximate Birkhoffian formulations for nonconservative systems. Reports on Mathematical Physics, 2018,81(2):137-145
|
[32] |
Nayfeh AH. Perturbation Methods. Hoboken, NJ: Wiley, 1973
|
[33] |
Kovacic I. Conservation laws of two coupled non-linear oscillators. International Journal of Non-Linear Mechanics, 2006,41(5):751-760
DOI
URL
|