Chinese Journal of Theoretical and Applied Mechanics ›› 2020, Vol. 52 ›› Issue (6): 1709-1718.DOI: 10.6052/0459-1879-20-233
• Solid Mechanics • Previous Articles Next Articles
Zhang Langting*, Vitaly A Khonik†, Qiao Jichao*,2)()
Received:
2020-06-29
Accepted:
2020-09-01
Online:
2020-11-18
Published:
2020-11-27
Contact:
Qiao Jichao
CLC Number:
Zhang Langting, Vitaly A Khonik, Qiao Jichao. ORIGIN OF HEAT EFFECTS AND SHEAR MODULUS CHANGES OF A Cu-BASED AMORPHOUS ALLOY 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1709-1718.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 (a) DSC traces of the initial state (Run 1), relaxed state (Run 2) and after the full crystallization (Run 3), the calculation and experimental data of the initial (b) and relaxad state (c) heat flow curves of the Cu$_{49}$Hf$_{42}$Al$_{9}$ amorphous alloy
Fig. 3 Experimental and calculated using Eq.(5) temperature dependences of shear moduli of Cu$_{49}$Hf$_{42}$Al$_{9}$ amorphous alloy in the initial and relaxed state. Temperature dependence of shear modulus in the crystalline state is also shown
Fig. 4 (a) Temperature dependence of the shear viscosity of Cu$_{49}$Hf$_{42}$Al$_{9 }$ amorphous alloy; (b) Temperature dependence of the activation energy and shear modulus of relaxed state
Fig. 5 (a) Temperature dependence of the defects concentration in initial and relaxed state of Cu$_{49}$Hf$_{42}$Al$_{9}$ amorphous alloy; (b) temperature dependence of the derivative ln d$C$/d$T$
Fig. 7 Temperature dependence of the normalized storage modulus $E'/Eu$ and loss modulus $E"/Eu$ of Cu$_{49}$Hf$_{42}$Al$_{9}$ amorphous alloy. Eu assumes as the value of storage modulus at ambient temperature
Fig. 8 Annealing time dependence of the normalized storage modulus, loss modulus and loss factor tan $\delta $ of Cu$_{49}$Hf$_{42}$Al$_{9}$ amorphous alloy at $T_{a} =663$ K. The internal fraction tan $\delta $ was fitted by Eq.(11)
Fig. 9 (a) Time dependence of the loss factor tan$\delta $ of Cu$_{49}$Hf$_{42}$Al$_{9}$ amorphous alloy at different annealing temperatures; (b) Comparison of evolution of internal friction with temperature of Cu$_{49}$Hf$_{42}$Al$_{9}$ amorphous alloy at different states
Fig. 10 Temperature dependence of the normalized storage modulus for the initial, relaxed and full crystalline state of Cu$_{49}$Hf$_{42}$Al$_{9}$ amorphous alloy. The inset shows loss factor tan$\delta $ dependence of temperature
[1] | 汪卫华. 非晶态物质的本质和特性. 物理学进展, 2013,33:177-351 |
( Wang Weihua. The nature and properties of amorphous mater. Progress in Physics, 2013,33(5):177-351 (in Chinese)) | |
[2] | Wang WH. Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 2019,106:100561 |
[3] |
Qiao JC, Wang Q, Pelletier JM, et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019,104:250-329
DOI URL |
[4] | 王云江, 魏丹, 韩懂 等. 非晶态固体的结构可以决定性能吗? 力学学报, 2020,52(2):303-317 |
( Wang Yunjiang, Wei Dan, Han Dong, et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):303-317 (in Chinese)) | |
[5] | 郝奇, 乔吉超, Pelletier JM. 锆基非晶合金的动态弛豫机制和高温流变行为. 力学学报, 2020,52(2):360-368 |
( Hao Qi, Qiao Jichao, Pelletier JM. Dynamic relaxation characteristics and high temperature flow behavior of Zr-based bulk metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):360-368 (in Chinese)) | |
[6] | 史荣豪, 肖攀, 杨荣. 基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测. 力学学报, 2020,52(2):369-378 |
( Shi Ronghao, Xiao Pan, Yang Rong. Prediction of shear transformation zones in metallic glasses based on laplacian of atomic volume. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):369-378 (in Chinese)) | |
[7] | 陈迎红, 王云江, 乔吉超. La$_{30}$Ce$_{30}$Al$_{15}$Co$_{25}$金属玻璃应力松弛行为. 力学学报, 2020,52(3):740-748 |
( Chen Yinghong, Wang Yunjiang, Qiao Jichao. Stress relaxation of La$_{30}$Ce$_{30}$Al$_{15}$Co$_{25}$ metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):740-748 (in Chinese)) | |
[8] |
Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977,25(4):407-415
DOI URL |
[9] |
Argon A. Plastic deformation in metallic glasses. Acta Metallurgica, 1979,27:47-58
DOI URL |
[10] | 汪卫华. 非晶中"缺陷"——流变单元研究. 中国科学: 物理学力学天文学, 2014,44:396-405 |
( Wang Weihua. Flow units: The "defects" of amorphous alloys. Scientia Sinica Physica, Mechanica & Astronomica, 2014,44:396-405 (in Chinese)) | |
[11] | Wang WH. Correlations between elastic moduli and properties in bulk metallic glasses. Journal of Applied Physics, 2006,99:093506 |
[12] |
Johnson W, Samwer K. A universal criterion for plastic yielding of metallic glasses with a ($T/T_{g})$ 2/3 temperature dependence. Physical Review Letters, 2005,95:195501
DOI URL PMID |
[13] | Mitrofanov YP, Makarov A, Khonik V, et al. On the nature of enthalpy relaxation below and above the glass transition of metallic glasses. Applied Physics Letters, 2012,101:131903 |
[14] | Tsyplakov A, Mitrofanov YP, Khonik V, et al. Relationship between the heat flow and relaxation of the shear modulus in bulk PdCuP metallic glass. Journal of Alloys and Compounds, 2015,618:449-454 |
[15] |
Granato A. Interstitialcy model for condensed matter states of face-centered-cubic metals. Physical Review Letters, 1992,68:974-977
URL PMID |
[16] |
Granato AV. Interstitialcy theory of simple condensed matter. The European Physical Journal B, 2014,87:18
DOI URL |
[17] |
Schober H, Laird BB. Localized low-frequency vibrational modes in glasses. Physical Review B, 1991,44:6746
DOI URL |
[18] |
Holder J, Granato A, Rehn L. Experimental evidence for split interstitials in copper. Physical Review Letters, 1974,32:1054
DOI URL |
[19] |
Goncharova E, Konchakov R, Makarov A, et al. Identification of interstitial-like defects in a computer model of glassy aluminum. Journal of Physics: Condensed Matter, 2017,29:305701
URL PMID |
[20] |
Kobelev N, Khonik V. Theoretical analysis of the interconnection between the shear elasticity and heat effects in metallic glasses. Journal of Non-Crystalline Solids, 2015,427:184-190
DOI URL |
[21] |
Makarov A, Mitrofanov YP, Afonin G, et al. Shear susceptibility - a universal integral parameter relating the shear softening, heat effects, anharmonicity of interatomic interaction and "defect" structure of metallic glasses. Intermetallics, 2017,87:1-5
DOI URL |
[22] |
Makarov A, Afonin G, Mitrofanov YP, et al. Evolution of the activation energy spectrum and defect concentration upon structural relaxation of a metallic glass determined using calorimetry and shear modulus data. Journal of Alloys and Compounds, 2018,745:378-384
DOI URL |
[23] | Makarov A, Mitrofanov YP, Afonin G, et al. Predicting temperature dependence of the shear modulus of metallic glasses using calorimetric data. Scripta Materialia, 2019,168:10-13 |
[24] | Zhu ZD, Ma E, Xu J. Elevating the fracture toughness of Cu$_{49}$Hf$_{42}$Al$_{9}$ bulk metallic glass: Effects of cooling rate and frozen-in excess volume. Intermetallics, 2014,46:164-172 |
[25] | Makarov A, Mitrofanov YP, Afonin G, et al. Shear susceptibility - A universal integral parameter relating the shear softening, heat effects, anharmonicity of interatomic interaction and "defect" structure of metallic glasses. Intermetallics, 2017,87:1-5 |
[26] | 管鹏飞, 王兵, 吴义成 等. 不均匀性: 非晶合金的灵魂. 物理学报, 2017,66(17):176112 |
( Guan Pengfei, Wang Bing, Wu Yicheng, et al. Heterogeneity: The soul of metallic glasses. Acta Physica Sinica, 2017,66(17):176112 (in Chinese)) | |
[27] | Mitrofanov YP, Kobelev N, Khonik V. Different metastable equilibrium states in metallic glasses occurring far below and near the glass transition. Journal of Non-Crystalline Solids, 2018,497:48-55 |
[28] | Makarov A, Afonin G, Mitrofanov YP, et al. Relationship between the heat effects and shear modulus changes occurring upon heating of a metallic glass into the supercooled liquid state. Journal of Non-Crystalline Solids, 2018,500:129-132 |
[29] | Duan YJ, Qiao JC, Crespo D, et al. Link between shear modulus and enthalpy changes of Ti$_{16.7}$Zr$_{16.7}$Hf$_{16.7}$Cu$_{16.7}$Ni$_{16.7}$Be$_{16.7}$ high entropy bulk metallic glass. Journal of Alloys and Compounds, 2020,830:154564 |
[30] | Dyre JC, Olsen NB, Christensen T. Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids. Physical Review B, 1996,53:2171 |
[31] |
Mitrofanov YP, Wang D, Makarov A, et al. Towards understanding of heat effects in metallic glasses on the basis of macroscopic shear elasticity. Scientific Reports, 2016,6:1-6
URL PMID |
[32] | Makarov A, Mitrofanov YP, Konchakov R, et al. Density and shear modulus changes occurring upon structural relaxation and crystallization of Zr-based bulk metallic glasses: In situ measurements and their interpretation. Journal of Non-Crystalline Solids, 2019,521:119474 |
[33] | Khonik V, Kitagawa K, Morii H. On the determination of the crystallization activation energy of metallic glasses. Journal of Applied Physics, 2000,87:8440-8443 |
[34] | Makarov A, Khonik V, Mitrofanov YP, et al. Interrelationship between the shear modulus of a metallic glass, concentration of frozen-in defects, and shear modulus of the parent crystal. Applied Physics Letters, 2013,102:091908 |
[35] | Egami T. Structural relaxation in metallic glasses. Annals of the New York Academy of Sciences, 1981,371:238-251 |
[36] | Qiao JC, Pelletier JM. Kinetics of structural relaxation in bulk metallic glasses by mechanical spectroscopy: Determination of the stretching parameter $\beta _{KWW}$. Intermetallics, 2012,28:40-44 |
[37] | Menard KP. Dynamic mechanical analysis: A practical introduction. CRC Press, Boca Raton, Florida, 2008 |
[38] | Lyu G, Qiao J, Pelletier J, et al. Dynamic mechanical behaviors of a metastable $\beta $-type bulk metallic glass composite. Journal of Alloys and Compounds, 2020,819:153040 |
[39] | Qiao JC, Pelletier JM, Esnouf C, et al. Impact of the structural state on the mechanical properties in a Zr-Co-Al bulk metallic glass. Journal of Alloys and Compounds, 2014,607:139-149 |
[1] | Hao Qi, Qiao Jichao, Jean-Marc Pelletier. DYNAMIC RELAXATION CHARACTERISTICS AND HIGH TEMPERATURE FLOW BEHAVIOR OF ZR-BASED BULK METALLIC GLASS 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 360-368. |
[2] | Zhang Weihong, Duan Wendong, Xu Yingjie, Zhu Jihong. PREDICTIONS OF EFFECTIVE OUT-PLANE SHEAR MODULUS AND SIZE EFFECT OF HEXAGONAL HONEYCOMB [J]. Chinese Journal of Theoretical and Applied Mechani, 2013, 45(2): 288-292. |
[3] | Yuyin Yu hua Tan Danian Cheng Chengda Da Jianbo Hu Huanran Wang. Quasi-elastic release behavior in shock-loaded aluminum [J]. Chinese Journal of Theoretical and Applied Mechani, 2010, 42(3): 432-438. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||