Chinese Journal of Theoretical and Applied Mechanics ›› 2020, Vol. 52 ›› Issue (5): 13831393.DOI: 10.6052/0459187920175
• Solid Mechanics • Previous Articles Next Articles
Ma Hangkong,Zhou Chenyang,Li Shirong()
Received:
20200526
Accepted:
20200526
Online:
20200918
Published:
20200917
Contact:
Li Shirong
CLC Number:
Ma Hangkong, Zhou Chenyang, Li Shirong. ANLYTICAL SOLUTION OF THERMOELASTIC DAMPING IN RECTANGULAR MINDLIN MICRO PLATES ^{1)}[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 13831393.
Table 2 Comparison of TED ($Q^{  1}\times 10^{4}$) of the square micro plate of ceramic (SiC) based on both of the Kirchhoff and Mindlin plate theories ($a = b, h = 1 \mu$m)
Table 3 Comparison of TED ($Q^{1}\times 10^{3}$) of square microplate with different sidetothickness ratios for the first six modes ($h = 1 \mu$m)[23]
Fig. 4 Difference between the values of TED of a square metal (Ni) micro plate evaluated by the two plate theories varying with the thickness for some specified values of $ a/h$ (in the first mode)
[1] 
Zener C, Internal fraction in solids. I. Theory of internal fraction in reeds. Physical Review, 1937,53:9099
DOI URL PMID 
[2] 
Lifshitz R, Roukes ML, Thermoelastic dampinginmicroand nanomechanical systems. Physical Review B, 2000,61:56005609
DOI URL 
[3] 
Nayfeh AH, Younis MI. Modeling and simulations of thermoelastic damping in microplates. Journal of Micromechanics and Microengineering, 2004,14:17111717
DOI URL 
[4]  Sun YX, Tohmyoh H. Thermoelastic damping of the axisymmetric vibration of circular plate resonators. Journal of Sound and Vibration, 2009,319:392405 
[5]  Sun YX, Saka M. Thermoelastic damping in microscale circular plate resonators. Journal of Sound and Vibration, 2010,329:328337 
[6]  Ali NA, Mohammadi AK. Thermoelastic damping in clampedclamped annular microplate. Applied Mechanics and Materials, 2012, 110116:18701878 
[7]  Salajeghe S, Khadem SE, Rasekh M. Nonlinear analysis of thermoelastic damping in axisymmetric vibration of micro circular thinplate resonators. Applied Mathematical Modelling, 2012,36:59916000 
[8]  Li P, Fang YM, Hu RF. Thermoelastic damping in rectangular and circular microplate resonators. Journal of Sound and Vibration, 2012,331:721733 
[9]  Fang YM, Li P, Wang ZL. Thermoelastic damping in the axisymmetric vibration of circular micro plate resonators with twodimensional heat conduction. Journal of Thermal Stresses, 2013,36:830850 
[10]  Fang YM, Li P, Zhou HY, et al. Thermoelastic damping in rectangular microplate resonators with threedimensional heat conduction. International Journal of Mechanical Sciences, 2017,133:578589 
[11] 
Sharma JN, Sharma R. Damping in microscale generalized thermoelastic circular plate resonators. Ultrasonics, 2011,51:352358
DOI URL PMID 
[12]  Sharma JN, Grover D. Thermoelastic vibration analysis of MEMS/NEMS plate resonators with voids. Acta Mechanics, 2012,223:167187 
[13]  Guo FL, Song J, Wang GQ, et al. Analysis of thermoelastic dissipation in circular microplate resonators using the generalized thermoelasticity theory. Journal of Sound and Vibration, 2014 ( 333):24652474 
[14]  Grover D. Damping in thin circular viscothermoelastic plate resonators. Canadian Journal of Physics, 2015,93:15971605 
[15]  Mohammadi AK, Ali NA. Effect of high electrostatic actuation on thermoelastic damping in thin rectangular microplate resonators. Journal of Theoretical and Applied Mechanics, 2015,53:317329 
[16] 
Bishop GE, Kinra V. Equivalence of the mechanical and entropic description of elastothermodynamics in composite materials. Mechanics of Composite Materials and Structures, 1996,3:8395
DOI URL 
[17] 
Bishop GE, Kinra V. Elastothermaldynamic damping in laminated composites. International Journal of Solids and Structures, 1997,34:10751092
DOI URL 
[18]  Sun YX, Jiang Y, Yang JL. Thermoelastic damping of the axisymmetric vibration of laminated trilayered circular plate resonators. Canada Journal of Physics, 2014,92:10261032 
[19]  Liu SB, Ma JX, Yang XF, et al. Theoretical analysis of thermoelastic damping in bilayered circular plate resonators with twodimensional heat conduction. International Journal of Mechanical Sciences, 2018,135:114123 
[20]  Liu SB, Ma JX, Yang XF, et al. Theoretical 3D model of thermoelastic damping in laminated rectangular plate resonators. International Journal of Structural Stability and Dynamics, 2018,18:1850158 
[21] 
Azizi S, Ghazavi MR, Rezazadeh G, et al. Thermoelastic damping in a functionally graded piezoelectric microresonator. International Journal of Mechanics and Materials in Design, 2015,11:357369
DOI URL 
[22]  Emami AA, Alibeigloo A. Exact solution for thermal damping of functionally graded Timoshenko microbeams. Journal of Thermal Stresses, 2016,39:231243 
[23]  Emami AA, Alibeigloo A. Thermoelastic damping analysis of FG Mindlin microplates using strain gradient theory. Journal of Thermal Stresses, 2016,39:14991522 
[24] 
Zhang ZY, Zhou JP, Zhang HL. Thermoelastic damping in functionally graded microbeam resonators. IEEE Sensors Journal, 2017,17:33813390
DOI URL 
[25] 
Li SR, Xu X, Chen S. Analysis of thermoelastic damping of functionally graded material beam resonators. Composite Structures, 2017,182:728736
DOI URL 
[26]  许新, 李世荣. 功能梯度材料微梁的热弹性阻尼研究. 力学学报, 2017,49(2):308316 
( Xu Xin, Li Shirong, Analysis of thermoelastic damping for functionally graded material microbeam. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):308316 (in Chinese))  
[27]  陈顺, 李世荣. 轴对称自由振动功能梯度材料微圆板中的热弹性阻尼. 力学季刊, 2018,39(4):719730 
( Chen Shun, Li Shirong. Thermoelastic damping in functionally graded material micro circular plates vibrating axisymmetrically. Chines Quarterly of Mechanics, 2018,39(4):719730 (in Chinese))  
[28] 
Li SR, Ma HK. Analysis of free vibration of functionally graded material microplates with thermoelastic damping. Archive Applied Mechanics, 2020,90:12851304
DOI URL 
[29]  Reddy JN, Wang CM, Lee KH. Shear Deformable Beams and PlatesRelationship with Classical Solutions. Elsevier Science Ltd, 2000 
[30]  李世荣, 张靖华, 徐华. 功能梯度与均匀圆板弯曲解的线性转换关系. 力学学报, 2011,43(5):871877 
( Li Shirong, Zhang Jinghua, Xu Hua. Linear transformation between the bending solutions of functionally graded and homogenous circular plats. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(5):871877 (in Chinese))  
[31]  李尧臣, 亓峰, 仲政. 功能梯度矩形板的近似理论与解析解. 力学学报, 2010,42(4):670681 
( Li Yaochen, Qi Feng, Zhong Zheng. Approximate theory and analytical solution for functionally graded piezoelectric rectangular plates. Chinese Journal of Theoretical and Applied Mechanics, 2010,42(4):670681 (in Chinese))  
[32]  李尧臣, 聂国隽, 杨昌锦. 面内功能梯度矩形板的近似理论与解答. 力学学报, 2013,45(4):560567 
( Li Yaochen, Nie Guojun, Yang Changjin. Approximate theory and analytical solution for rectangular plates with inplane stiffness gradient. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(4):560567 (in Chinese))  
[33]  刘璟泽, 姜东, 韩晓林 等. 曲线加筋KirchhoffMindlin 板自由振动分析. 力学学报, 2017,49(4):929939 
( Liu Jingze, Jiang Dong, Han Xiaolin, et al. Free vibration analysis of curvilinearly stiffend KirchhoffMindlin plates. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):929939 (in Chinese)) 
[1]  Xu Xin, Li Shirong. ANALYSIS OF THERMOELASTIC DAMPING FOR FUNCTIONALLY GRADED MATERIAL MICROBEAM [J]. Chinese Journal of Theoretical and Applied Mechani, 2017, 49(2): 308316. 
Viewed  
Full text 


Abstract 

