Chinese Journal of Theoretical and Applied Mechanics ›› 2020, Vol. 52 ›› Issue (2): 360-368.DOI: 10.6052/0459-1879-20-004
Special Issue: 无序固体的力学行为专题(2020年第2期)
• Theme Articles on ”Mechanical Behaviors of Disordered Solids” • Previous Articles Next Articles
Hao Qi*,Qiao Jichao*2)(),Jean-Marc Pelletier†
Received:
2020-01-06
Accepted:
2020-02-26
Online:
2020-03-18
Published:
2020-03-25
Contact:
Qiao Jichao
CLC Number:
Hao Qi, Qiao Jichao, Jean-Marc Pelletier. DYNAMIC RELAXATION CHARACTERISTICS AND HIGH TEMPERATURE FLOW BEHAVIOR OF ZR-BASED BULK METALLIC GLASS 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 360-368.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 DSC curve of Zr$_{50}$Cu$_{40}$Al$_{10}$ metallic glass with a heating rate of 10 K/min. Inset shows the XRD pattern of Zr$_{50}$Cu$_{40}$Al$_{10}$ metallic glass
Fig. 2 Evolution of the normalized storage modulus and loss modulus with temperature of Zr$_{50}$Cu$_{40}$Al$_{10}$ metallic glass (heating rate: 3 K/min, driving frequency: 1 Hz). $E_{u}$ is the unrelaxed modulus, assumed to be equal to the storage modulus at ambient temperature. Inset is the loss modulus and loss factor as a function of temperature
Fig. 3 Evolution of the normalized loss modulus $G''/Gu$ as a\\ function of frequency at different temperatures for Zr$_{50}$Cu$_{40}$Al$_{10}$ bulk metallic glass
Fig. 4 The master curve of the loss modulus $G''/G_u$ of the Zr$_{50}$Cu$_{40}$Al$_{10}$ bulk metallic glass with the reference temperature of 710 K. The red solid line is the fit by the Eq.(1)
Fig. 5 Correlation between the loss factor and the frequency. (a) Double\\ logarithmic plot of $\tan\delta$ and $\omega$ at the different temperature. The solid line is the fit by the Eq.(2). (b) The temperature dependence of correlation factor $\chi$
Fig. 6 The $\ln \left( {\tan \delta } \right)$ vs. $1000/T$ in the Zr$_{50}$Cu$_{40}$Al$_{10}$ bulk metallic glass. Driving frequency: 1 Hz; Heating rate: 3 K/min
Fig. 10 Comparison between experimental data the Zr$_{50}$Cu$_{40}$Al$_{10}$ metallic glass (master curve of the viscosity, the reference temperature is 693 K) and prediction of QPD model (Eq.(9))
[1] | Wang WH . The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 2012,57(3):487-656 |
[2] | Long ZL, Chang CT, Ding YH , et al. Corrosion behavior of Fe-based ferromagnetic (Fe, Ni)-B-Si-Nb bulk glassy alloys in aqueous electrolytes. Journal of Non-Crystalline Solids, 2008,354(40):4609-4613 |
[3] | Qiao JC, Wang Q, Pelletier JM , et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019,104:250-329 |
[4] | 罗斌强, 赵剑衡, 谭福利 等. 预压下锆基块体非晶合金的热冲击变形与破坏. 力学学报, 2011,43(1):235-242 |
( Luo Binqiang, Zhao Jianheng, Tan Fuli , et al. Deformation and fracture of Zr$_{51}$Ti$_{5}$Ni$_{10}$Cu$_{25}$Al$_{9}$ bulk metallic glass under rapid heating and pre-load. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(1):235-242 (in Chinese)) | |
[5] | 汪卫华 . 非晶态物质的本质和特性. 物理学进展, 2013,33(5):4-178 |
( Wang Weihua . The nature and properties of amorphous mater. Progress in Physics, 2013,33(5):4-178 (in Chinese)) | |
[6] | 管鹏飞, 王兵, 吴义成 等. 不均匀性:非晶合金的灵魂. 物理学报, 2017,66(17):176112 |
( Guan Pengfei, Wang Bing, Wu Yicheng , et al. Heterogeneity: The soul of metallic glasses. Acta Physica Sinica, 2017,66(17):176112 (in Chinese)) | |
[7] | Ye JC, Lu J, Liu CT , et al. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nature Materials, 2010,9(8):619 |
[8] | Ichitsubo T, Matsubara E, Yamamoto T , et al. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses. Physical Review Letters, 2005,95(24):245501 |
[9] | Liu YH, Wang D, Nakajima K , et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Physical Review Letters, 2011,106(12):125504 |
[10] | 王云江, 魏丹, 韩懂 等. 非晶态固体的结构可以决定性能吗? 力学学报, 2020,52(2):303-317 |
( Wang Yunjiang, Wei Dan, Han Dong , et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):303-317 (in Chinese)) | |
[11] | Schuh CA, Hufnagel TC, Ramamurty U . Mechanical behavior of amorphous alloys. Acta Materialia, 2007,55(12):4067-4109 |
[12] | 史荣豪, 肖攀, 杨荣 . 基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测. 力学学报. 2020,52(2): doi: 10.6052/0459-1879-19-369 |
( Shi Ronghao, Xiao Pan, Yang Rong . Prediction of Shear Transformation Zones in Metallic Glasses Based on Laplacian of Atomic Volume. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2): doi: 10.6052/0459-1879-19-369 (in Chinese)) | |
[13] | Nagel C, Rätzke K, Schmidtke E , et al. Free-volume changes in the bulk metallic glass Zr$_{46.7}$Ti$_{8.3}$Cu$_{7.5}$Ni$_{10}$Be$_{27.5}$ and the undercooled liquid. Physical Review B, 1998,57(17):10224-10227 |
[14] | Jackle J . Models of the glass transition. Reports on Progress in Physics, 1986,49(2):171-231 |
[15] | Grest G, Cohen MH . Liquid-glass transition: Dependence of the glass transition on heating and cooling rates. Physical Review B, 1980,21(9):4113 |
[16] | Ngai KL . Correlation between the secondary $\beta $-relaxation time at $T_{\rm g}$ with the Kohlrausch exponent of the primary $\alpha $ relaxation or the fragility of glass-forming materials. Physical Review E, 1998,57(6):7346-7349 |
[17] | Cavaille JY, Perez J, Johari GP . Molecular theory for the rheology of glasses and polymers. Physical Review B, 1989,39(4):2411-2422 |
[18] | Yao ZF, Qiao JC, Pelletier JM , et al. Characterization and modeling of dynamic relaxation of a Zr-based bulk metallic glass. Journal of Alloys Compounds, 2017,690:212-220 |
[19] | Pelletier JM . Dynamic mechanical properties in a Zr$_{46.8}$Ti$_{13.8}$Cu$_{12.5}$Ni$_{10}$Be$_{27.5}$ bulk metallic glass. Journal of Alloys Compounds, 2005,393(1-2):223-230 |
[20] | Ngai K . Relaxation and diffusion in complex systems. Springer Science & Business Media, 2011 |
[21] | Debye P . Polar Molecules. New York: Chemical Catalog Company, 1929 |
[22] | Davidson DW, Cole RH . Dielectric relaxation in glycerol, propylene glycol, and n-propanol. The Journal of Chemical Physics, 1951,19(12):1484-1490 |
[23] | Perera D . Compilation of the fragility parameters for several glass-forming metallic alloys. Journal of Physics: Condensed Matter, 1999,11(19):3807 |
[24] | Gauthier C, David L, Ladouce L , et al. Nonlinear mechanical response of amorphous polymers below and through glass transition temperature. Journal of Applied Polymer Science, 1997,65(12):2517-2528 |
[25] | Pelletier JM, Van de Moortèle B, Lu I, . Viscoelasticity and viscosity of Pd-Ni-Cu-P bulk metallic glasses. Materials Science Engineering: A, 2002,336(1-2):190-195 |
[26] | Wang Q, Pelletier JM, Blandin JJ , et al. Mechanical properties over the glass transition of Zr$_{41.2}$Ti$_{13.8}$Cu$_{12.5}$Ni$_{10}$Be$_{22.5}$ bulk metallic glass. Journal of Non-Crystalline Solids, 2005,351(27):2224-2231 |
[27] | Demetriou MD, Johnson WL . Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1. Acta Materialia, 2004,52(12):3403-3412 |
[28] | Lu J, Ravichandran G, Johnson WL . Deformation behavior of the Zr$_{41.2}$Ti$_{13.8}$Cu$_{12.5}$Ni$_{10}$Be$_{22.5}$ bulk metallic glass over a wide range of strain-rates and temperatures. Acta Materialia, 2003,51(12):3429-3443 |
[29] | 王庆 . 大块非晶合金的力学行为及其微观机理研究. [博士论文]. 上海: 上海交通大学, 2006 |
( Wang Qing . Study of the mechanical behavior and its mecahnism of bulk amorphous alloys. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2006 (in Chinese)) | |
[30] | Spaepen F . A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977,25(4):407-415 |
[31] | Jiang MQ, Wilde G, Dai LH . Origin of stress overshoot in amorphous solids. Mechanics of Materials, 2015,81:72-83 |
[32] | Kawamura Y, Inoue A . Newtonian viscosity of supercooled liquid in a Pd40Ni40P20 metallic glass. Applied Physics Letters, 2000,77(8):1114-1116 |
[33] | Zhang C, Qiao JC, Pelletier JM , et al. Arrhenius activation of Zr$_{65}$Cu$_{18}$Ni$_{7}$Al$_{10}$ bulk metallic glass in the supercooled liquid region. Intermetallics, 2017,86:88-93 |
[34] | Kawamura Y, Nakamura T, Kato H , et al. Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses. Materials Science and Engineering: A, 2001, 304- 306:674-678 |
[35] | Bletry M, Guyot P, Blandin JJ , et al. Free volume model: High-temperature deformation of a Zr-based bulk metallic glass. Acta materialia, 2006,54(5):1257-1263 |
[36] | Spaepen F, Turnbull D . A mechanism for the flow and fracture of metallic glasses. Scripta Metallurgica, 1974,8(5):563-568 |
[37] | Argon A . Plastic deformation in metallic glasses. Acta Metallurgica, 1979,27(1):47-58 |
[1] | Zhang Langting, Vitaly A Khonik, Qiao Jichao. ORIGIN OF HEAT EFFECTS AND SHEAR MODULUS CHANGES OF A Cu-BASED AMORPHOUS ALLOY 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1709-1718. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||