Chinese Journal of Theoretical and Applied Mechanics ›› 2019, Vol. 51 ›› Issue (5): 1530-1537.DOI: 10.6052/0459-1879-18-440
• Biomechanics,Engineering and Interdiscipliary Mechanics • Previous Articles Next Articles
Xu Bofeng(),Liu Bingbing,Feng Junheng,Zuo Lu
Received:
2019-12-20
Online:
2019-09-18
Published:
2019-09-30
Contact:
Xu Bofeng
CLC Number:
Xu Bofeng, Liu Bingbing, Feng Junheng, Zuo Lu. INFLUENCE OF VORTEX CORE SIZE ON AERODYNAMIC CALCULATION OF WIND TURBINE IN FREE VORTEX WAKE METHOD1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1530-1537.
Add to citation manager EndNote|Ris|BibTeX
Fig. 6 Development of dimensionless vorticity levels of the blade tip vortex along with the wake age angle under different values of $a_{1}$($r_{0} = 0.6 c$)
Fig. 7 Development of dimensionless vorticity levels of the blade tip vortex along with the wake age angle under different values of $a_{1}$($r_{0} = 0.7 c)$
Fig. 9 Computational result of streamlines in blade tip region with the wind speed subtracted from the local velocity ($r_{0} = 0.6 c$, $a_{1 } = 0.002$)
Fig. 10 Computational result of streamlines in blade tip region with the wind speed subtracted from the local velocity ($r_{0} = 0.7 c$, $a_{1 } = 0.001$)
Fig. 11 Computational result of streamlines in blade tip region with the wind speed subtracted from the local velocity ($r_{0} = 0.6 c$, $a_{1 } = 0.000,2$)
Fig. 12 Computational result of streamlines in blade tip region with the wind speed subtracted from the local velocity ($r_{0} = 0.4 c$, $a_{1 } = 0.000,2$)
[1] | Xu BF, Feng JH, Wang TG , et al. Application of a turbulent vortex core model in the free vortex wake scheme to predict wind turbine aerodynamics. Journal of Renewable and Sustainable Energy, 2018,10(2):023303 |
[2] | Xu BF, Wang TG, Yuan Y , et al. A simplified free vortex wake model of wind turbines for axial steady conditions. Applied Sciences. 2018,8(6):866 |
[3] | Su K, Bliss D . A novel hybrid free-wake model for wind turbine performance and wake evolution. Renewable Energy, 2019,131:977-992 |
[4] | 左潞, 唐植懿, 许波峰 等. 涡模型对风力机气动特性的影响研究. 可再生能源, 2016,34(10):1491-1496 |
( Zuo Lu, Tang Zhiyi, Xu Bofeng , et al. Investigation of effects of vortex models on wind turbine aerodynamic characteristics. Renewable Energy Resources, 2016,34(10):1491-1496 (in Chinese)) | |
[5] | 吕品, 廖明夫, 王四季 等. 基于升力面和全自由涡尾迹的风力机气动模型及其参数影响. 机械设计与制造, 2017,3:52-55 |
( Lü Pin, Liao Mingfu, Wang Siji , et al. Predictions of wind turbine aerodynamics based on lifting surface theory with fully free vortex and the influence of the parameters. Machinery Design and Manufacture, 2017,3:52-55 (in Chinese)) | |
[6] | Vatistas GH, Kozel V, Minh W . A simpler model for concentrated vortices. Experiments in Fluids, 1991,11(1):73-76 |
[7] | Scully MP . Computation of helicopter rotor wake geometry and its influence on rotor harmonic airloads. [PhD Thesis]. Cambridge: Massachusetts Institute of Technology, 1975 |
[8] | Lamb H. Hydrodynamics. Cambridge: Cambridge University Press, 1932 |
[9] | Xu BF, Wang TG, Yuan Y , et al. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions. Philosophical Transactions of the Royal Society A, 2015,373(2035):20140080 |
[10] | Tang D, Bao SY, Luo LJ , et al. Study on the aeroelastic responses of a wind turbine using a coupled multibody-FVW method. Energy, 2017,141:2300-2313 |
[11] | 张蕴宁, 叶舟, 李春 . 基于改进型升力面自由涡尾迹法的风力机性能研究. 太阳能学报, 2017,38(5):1316-1323 |
( Zhang Yunning, Ye Zhou, Li Chun . Wind turbine aerodynamic performance simulation based on improved lifting surface freewake method. Acta Energiae Solaris Sinica, 2017,38(5):1316-1323 (in Chinese)) | |
[12] | Sant T, del Campo V, Micallef D , et al. Evaluation of the lifting line vortex model approximation for estimating the local blade flow fields in horizontal-axis wind turbines. Journal of Renewable and Sustainable Energy, 2016,8(2):023302 |
[13] | Gupta S, Leishman JG . Validation of a free vortex wake model for wind turbine in yawed flow//Collection of Technical Papers-44th AIAA Aerospace Sciences Meeting, 2006,7:4529-4543 |
[14] | Yu W , Ferreira CS, van Kuik G, et al. Verifying the blade element momentum method in unsteady,radially varied, axisymmetric loading using a vortex ring model. Wind Energy, 2017,20:269-288 |
[15] | Basuno B . A prescribed wake model for vertical axis wind turbines. [PhD Thesis]. Glasgow: University of Glasgow, 1992 |
[16] | Landahl MT . Roll-up model for rotor wake vortices. ASRL-TR-194-4, Massachusetts Institute of Technology, 1981 |
[17] | Miller RH . Methods for rotor aerodynamic and dynamic analysis. Progress in Aerospace Sciences, 1985,22(2):113-160 |
[18] | Dobrev I, Maalouf B, Troldborg N , et al. Investigation of the wind turbine vortex structure//14th Int Symp on Applications of the Laser Techniques to Fluid Mechanics, Lisbon, 2008 |
[19] | Bhagwat MJ, Leishman JG . Correlation of helicopter tip vortex measurements. AIAA Journal, 2000,38(2):301-308 |
[20] | Bhagwat MJ, Leishman JG . Generalized viscous vortex core models for application to free-vortex wake and aeroacoustic calculations. American Helicopter Society 58th Annual National Forum Proceedings, Montreal,Canada, June 11-13, 2002 |
[21] | 林孟达, 崔桂香, 张兆顺 等. 飞机尾涡演变及快速预测的大涡模拟研究. 力学学报, 2017,49(6):1185-1200 |
( Lin Mengda, Cui Guixiang, Zhang Zhaoshun , et al. Large eddy simulation and rapid prediction of aircraft tail vortex Evolution. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1185-1200 (in Chinese)) | |
[22] | Gupta S . Development of a time-accutate viscous lagrangian vortex wake model for wind turbine application. [PhD thesis]. Maryland: University of Maryland, 2006 |
[23] | Chkir S . Unsteady loads evaluation for a wind turbine rotor using free wake method. Energy Procedia, 2011,6:777-785 |
[24] | Bhagwat M, Leishman JG . Stability, consistency and convergence of time marching free-vortex rotor wake algorithms. Journal of the American Helicopter Society, 2001,46(1):59-71 |
[25] | Gupta S, Leishman JG . Accuracy of the induced velocity from helicoidal vortices using straight-line segmentation. AIAA Journal, 2005,43(1):29-40 |
[26] | Elgammi M, Sant T . A new stall delay algorithm for predicting the aerodynamics loads on wind turbine blades for axial and yawed conditions. Wind Energy, 2017,20:1645-1663 |
[27] | 李国强, 张卫国, 陈立 等. 风力机叶片翼型动态试验技术研究. 力学学报, 2018,50(4):751-765 |
( Li Guoqiang, Zhang Weiguo, Chen Li , et al. Research on dynamic test technology for wind turbine blade airfoil. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):751-765(in Chinese)) | |
[28] | Li Y, Calisal SM . A discrete vortex method for simulating a stand-alone tidal current turbine: Modeling and validation. Journal of Offshore Mechanics and Arctic Engineering, 2010,132(3):1102-1110 |
[29] | Ananthan S, Leishman JG, Ramasamy M . The role of filament stretching in the free-vortex modeling of rotor wakes. Journal of the American Helicopter Society, 2004,49(2):176-191 |
[30] | Hand MM, Simms DA, Fingersh LJ , et al. Unsteady aerodynamics experiment phase VI: Wind tunnel test configurations and available data campaign. Technical Report NREL/TP-500-29955, National Renewable Energy Laboratory, Golden, 2001 |
[31] | 高天达, 孙姣, 范赢 等. 基于PIV技术分析颗粒在湍流边界层中的行为. 力学学报, 2019,51(1):103-110 |
( Gao Tianda, Sun Jiao, Fan Ying , et al. Analysis of particle behavior in turbulent boundary layer based on PIV technique. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):103-110(in Chinese)) | |
[32] | Xiao JP, Wu J, Chen L , et al. Particle image velocimetry (PIV) measurements of tip vortex wake structure of wind turbine. Applied Mathematics and Mechanics, 2011,32(6):729-73 |
[33] | Simms D, Schreck S, Hand M , et al. NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: A comparison of predictions to measurements. NREL/TP--500-29494, National Renewable Energy Laboratory, Golden, 2001 |
[1] | Zhang Weiguo, Shi Zheyu, Li Guoqiang, Yang Yongdong, Huang Minqi, Bai Yunmao. NUMERICAL STUDY ON DYNAMIC STALL FLOW CONTROL FOR WIND TURBINE AIRFOIL USING PLASMA ACTUATOR 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689. |
[2] | Tang Xinzi, Wang Xiaoyu, Yuan Keren, Peng Ruitao. QUANTITATION STUDY OF INFLUENCE OF WIND SPEED UNCERTAINTY ON AERODYNAMIC FORCES OF WIND TURBINE 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 51-59. |
[3] | Chen Jiahao, Hu Zhiqiang. STUDY ON AERODYNAMIC DAMPING OF SEMI-SUBMERSIBLE FLOATING WIND TURBINES1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1255-1265. |
[4] | Qiao Chenliang, Xu Heyong, Ye Zhengyin. CIRCULATION CONTROL ON WIND TURBINE AIRFOIL WITH BLUNT TRAILING EDGE [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 135-145. |
[5] | Li Guoqiang, Zhang Weiguo, Chen Li, Nie Bowen, Zhang Peng, Yue Tingrui. RESEARCH ON DYNAMIC TEST TECHNOLOGY FOR WIND TURBINE BLADE AIRFOIL [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 751-765. |
[6] | Zhu Zheng, Zhao Qijun, Wang Bo. STUDIES ON VORTEX INTERACTION MECHANISM AND AERODYNAMIC CHARACTERISTIC OF SCISSORS TAIL ROTOR [J]. Chinese Journal of Theoretical and Applied Mechani, 2016, 48(4): 886-896. |
[7] | Liu Qiang, Liu Zhou, Bai Peng, Li Feng. NUMERICAL STUDY ABOUT AERODYNAMIC CHARACTERISTICS AND FLOW FIELD STRUCTURES FOR A SKIN OF AIRFOIL WITH ACTIVE OSCILLATION AT LOWREYNOLDS NUMBER [J]. Chinese Journal of Theoretical and Applied Mechani, 2016, 48(2): 269-277. |
[8] | Yang Lei, Hou Yanze, Zuo Guang, Liu Yan, Guo Bin. AERODYNAMIC CHARACTERISTICS MEASSUREMENT OF MARS VEHICLES DURING ENTRY FLIGHT [J]. Chinese Journal of Theoretical and Applied Mechani, 2015, 47(1): 8-14. |
[9] | Chen Qian, Bai Peng, Li Feng. STUDY ON THE FORMATION MECHANISMS OF UNSTEADY AERODYNAMIC CHARACTERISTICS OF MORPHING FLIGHT VEHICLE IN SWEEP-VARYING PROCESS [J]. Chinese Journal of Theoretical and Applied Mechani, 2013, 45(3): 307-313. |
[10] | ,,. The Study Of Aerodynamic Characteristics Of Afterbody And Effect Of Cable-Mounting [J]. Chinese Journal of Theoretical and Applied Mechani, 2004, 36(3): 257-264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||