EI、Scopus 收录
中文核心期刊
Zhang Xuekuan, Xu Jiy, Sun Junjie, Zhang Yongjie, Zhang Zhenghao, Ge Weiy. SEGREGATION BEHAVIOR OF SINTER IN VERTICALLY ARRANGED COOLER WITH HIGE PERFORMANCE GPU SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 64-73. DOI: 10.6052/0459-1879-18-339
Citation: Zhang Xuekuan, Xu Jiy, Sun Junjie, Zhang Yongjie, Zhang Zhenghao, Ge Weiy. SEGREGATION BEHAVIOR OF SINTER IN VERTICALLY ARRANGED COOLER WITH HIGE PERFORMANCE GPU SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 64-73. DOI: 10.6052/0459-1879-18-339

SEGREGATION BEHAVIOR OF SINTER IN VERTICALLY ARRANGED COOLER WITH HIGE PERFORMANCE GPU SIMULATION

  • Energy-saving and emission-reduction technologies are increasingly required in the iron and steel industry, leading to urgent demanding for very efficient methods of the waste heat recovery and dust emission reduction. The vertically arranged sinter cooler is a new and an efficient apparatus to recover the sensible heat and reduce the dust pollution in the sintering process, which attracts much more attention in recent years. However, the segregation phenomenon is very severe in current design due to the wide diameter distribution of the sinter particles, leading to great reduction of the heat recovery. In order to solve this problem, the structure of the vertically arranged sinter cooler and the operating conditions should be optimized. However, it is very hard to obtain the detailed information of the distribution of the sinter particles in an industrial-scale apparatus. Along with the development in the computer science, the discrete element method (DEM) could provide more and more power for the study of particulate systems, which obtains detailed information of the particles. Thus, DEM is adopted to study the segregation of sinter particles in the vertically arranged sinter cooler. To alleviate the problem of huge computing load, the graphics processing unit (GPU) is adopted to accelerate the DEM simulation. It is found that the inlet tube has significant influence on the distribution of the sinter particles, so that three types of feeding tube structures are designed and tested. Although the sinter particles of different diameters are evenly mixed originally, severe particle segregation occurs in the sinter cooler, where the small and large sinter particles are mostly located at the center and in the periphery regions, respectively. It is obvious that the level of segregation changes with the structure of the feeding tube, which shows that both the number and inclined angle of the feeding tubes will affect the final segregation. The results show that four inlet tubes with small inclined angles are better for tailoring the size distribution of the sinters. So optimization of the structure of the inlet tubes could reduce the segregation of the sinter particles and the efficiency of sensible heat recovery will be improved accordingly.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return