Chinese Journal of Theoretical and Applied Mechanics ›› 2019, Vol. 51 ›› Issue (3): 904911.DOI: 10.6052/0459187918319
• Dynamics, Vibration and Control • Previous Articles Next Articles
Mengke Wei, Xiujing Han^{2)}(), Xiaofang Zhang, Qinsheng Bi
Received:
20180929
Online:
20190518
Published:
20190528
Contact:
Xiujing Han
CLC Number:
Mengke Wei, Xiujing Han, Xiaofang Zhang, Qinsheng Bi. POSITIVE AND NEGATIVE PULSESHAPED EXPLOSION AS WELL AS BURSTING OSCILLATIONS INDUCED BY IT^{1)}[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 904911.
Fig. 1 A supercritical Hopf bifurcation in the fast subsystem (2), where the bifurcation value is $\alpha = 0$. The system parameters are $\delta = 0.5$, $\mu = 0.1$, $\beta = 0.05$, $\gamma = 0.1$ and $q = 0.5$, respectively
Fig. 4 Schematic diagram of the rest areas and active area of the fast subsystem, where the equilibrium curve corresponds to the situation of $\mu = 0.999$ in Fig. 2(b) (lower). $A_{\rm r1} $ and $A_{\rm r2} $: the rest areas, $A_{\rm p}$: the active area induced by the positive and negative PSE
Fig. 5 Bursting oscillations of pointpoint type induced by positive and negative PSE of equilibrium point for $\alpha =  0.05$, $\beta = 0.05$, $\gamma = 0.1$, $q = 0.5$, $\omega = 0.01$, $\mu = 0.99$
Fig. 7 Bursting oscillations of cyclecycle type induced by positive and negative PSE of limit cycle for$\alpha = 0.01$, $\beta = 0.05$, $\gamma = 0.1$, $q = 0.5$, $\omega = 0.01$, $\mu = 0.99$
[1] 
Wang Y, Zhang L.Existence of asymptotically stable periodic solutions of a Rayleigh type equation. Nonlinear Analysis, 2009, 71(5): 17281735
DOI URL 
[2] 
Han XJ, Xia FB, Zhang C, et al.Origin of mixedmode oscillations through speed escape of attractors in a Rayleigh equation with multiplefrequency excitations. Nonlinear Dynamics, 2017, 88(4): 26932703
DOI URL 
[3] 
Warminski J.Nonlinear normal modes of a selfexcited system driven by parametric and external excitations. Nonlinear Dynamics, 2010, 61(4): 677689
DOI URL 
[4] 
Bikdash M, Balachandran B, Navfeh A.Melnikov analysis for a ship with a general rolldamping model. Nonlinear Dynamics, 1994, 6(1): 101124
DOI URL 
[5] 
Desai YM, Yu P, Popplewell N, et al.Finite element modelling of transmission line galloping. Computers & Structures, 1995, 57(3): 407420
DOI URL 
[6] 
Felix JLP, Balthazar JM, Brasil RMLRF.Comments on nonlinear dynamics of a nonideal DuffingRayleigh oscillator: Numerical and analytical approaches. Journal of Sound & Vibration, 2009, 319(3): 11361149
DOI URL 
[7]  Warminski J, Balthazar JM.Vibrations of a parametrically and selfexcited system with ideal and nonideal energy sources. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2003, 25(4): 413420 
[8] 
Kumar P, Kumar A, Erlicher S.A modified hybrid van der PolDuffingRayleigh oscillator for modelling the lateral walking force on a rigid floor. Physica D, 2017, 358: 114
DOI URL 
[9] 
Tabejieu LMA, Nbendjo BRN, Filatrella G, et al.Amplitude stochastic response of Rayleigh beams to randomly moving loads. Nonlinear Dynamics, 2017, 89(2): 925937
DOI URL 
[10] 
黄显高,徐健学,何岱海等. 利用小波多尺度分解算法实现混沌系统的噪声减缩. 物理学报,1999,48(10): 18101817
DOI URL 
(Huang Xiangao, Xu Jianxue, He Daihai, et al.Reduction of noise in chaotic systems by wavelet multiscaling decomposition algorithm. Acta Phys. Sin, 1999, 48(10): 18101817 (in Chinese))
DOI URL 

[11] 
王帅,于文浩,陈巨辉等. 鼓泡流化床中流动特性的多尺度数值模拟. 力学学报,2016,48(3): 585592
DOI URL 
(Wang Shuai, Yu Wenhao, Chen Juhui, et al.Multiscale simulation on hydrodynamic characteristics in bubbling fluidized bed. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 585592 (in Chinese))
DOI URL 

[12] 
贾宏涛,许春晓,崔桂香. 槽道湍流近壁区多尺度输运特性研究. 力学学报,2007,39(2): 181187
DOI URL 
(Jia Hongtao, Xu Chunxiao, Cui Guixiang.Multiscale energy transfer in nearwall region of turbulentchannel flow. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(2): 181187 (in Chinese))
DOI URL 

[13] 
Demongeot J, BezyWendling J, Mattes J, et al.Multiscale modeling and imaging: the challenges of biocomplexity. Proceedings of the IEEE, 2003, 91(10): 17231737
DOI URL 
[14] 
Savino GV, Formigli CM.Nonlinear electronic circuit with neuron like bursting and spiking dynamics. Biosystems, 2009, 97(1): 914
DOI URL PMID 
[15] 
Lu QS, Gu HG, Yang ZQ, et al.Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: Experiments and analysis. Acta Mech. Sin, 2008, 24(6): 593628
DOI URL 
[16] 
Sriram K, Gopinathan MS.Effects of delayed linear electrical perturbation of the BelousovZhabotinsky reaction: A case of complex mixed mode oscillations in a batch reactor. React. Kinet. Catal. Leu, 2003, 79(2): 341349
DOI URL 
[17] 
Wu HG, Bao BC, Liu Z, et al.Chaotic and period bursting phenomena in a memristive Wienbridge oscillator. Nonlinear Dynamics, 2016, 83(12): 893903
DOI URL 
[18] 
Wang HX, Zheng YH, Lu QS.Stability and bifurcation analysis in the coupled HR neurons with delayed synaptic connection. Nonlinear Dynamics, 2017, 88(3): 20912100
DOI URL 
[19] 
陈振阳,韩修静,毕勤胜. 一类二维非自治离散系统中的复杂簇发振荡结构. 力学学报,2017,49(1): 165174
DOI URL 
(Chen Zhenyang, Han Xiujing, Bi Qinsheng.Complex bursting oscillation structures in a twodimensional nonautonomous discrete system. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 165174 (in Chinese))
DOI URL 

[20] 
陈振阳,韩修静,毕勤胜. 离散达芬映射中由边界激变所诱发的复杂的张弛振荡. 力学学报,2017,49(6): 13801389
DOI URL 
(Chen Zhenyang, Han Xiujing, Bi Qinsheng.Complex relaxation oscillation triggered by boundary crisis in the discrete Duffing map. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 13801389 (in Chinese))
DOI URL 

[21] 
曲子芳,张正娣,彭淼等. 双频激励下Filippov系统的非光滑簇发振荡机理. 力学学报,2018,50(5): 11451155
DOI URL 
(Qu Zifang, Zhang Zhengdi, Peng Miao, et al.NonSmooth bursting oscillation mechanisms in a Filippovtype system with multiple periodic excitations. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 11451155 (in Chinese))
DOI URL 

[22] 
Koper MTM.Bifurcations of mixedmode oscillations in a threevariable autonomous van der PolDuffing model with a crossshaped phase diagram. Physica D, 1995, 80(1): 7294
DOI URL 
[23] 
毕勤胜,陈章耀,朱玉萍等.参数激励耦合系统的复杂动力学行为分析. 力学学报, 2003, 35(3): 367372
DOI URL 
(Bi Qinsheng, Chen Zhangyao, Zhu Yuping, et al.Dynamical analysis of coupled oscillators with parametrical excitation. Chinese Journal of Theoretical and Applied Mechanics, 2003, 35(3): 367372 (in Chinese))
DOI URL 

[24] 
Curtu R.Singular Hopf bifurcations and mixedmode oscillations in a twocell inhibitory neural network. Physica D, 2010, 239(9): 504514
DOI URL 
[25] 
Marino F, Ciszak M, Abdalah SF, et al.Mixedmode oscillations via canard explosions in lightemitting diodes with optoelectronic feedback.. Phys. Rev E, 2011, 84(4 Pt 2): 047201
DOI URL PMID 
[26] 
Hou JY, Li XH, Zuo DW, et al.Bursting and delay behavior in the BelousovZhabotinsky reaction with external excitation. Eur. Phys. J. Plus, 2017, 132(6): 283
DOI URL 
[27] 
Yu Y, Zhang C, Han XJ.Routes to bursting in active control system with multiple time delays. Nonlinear Dynamics, 2017, 88(3): 22412254
DOI URL 
[28]  Han XJ, Bi QS, Kurths J.Route to bursting via pulseshaped explosion. Phys. Rev. E, 2018, 98(1): 010201 
[29] 
Han XJ, Bi QS, Ji P, et al.Fastslow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies. Phys. Rev. E, 2015, 92(1): 012911
DOI URL PMID 
[30]  Rinzel J.Bursting oscillations in an excitable membrane model//Sleeman BD, Jarvis RJ. Ordinary and Partial Differential Equations. Berlin: SpringerVerlag , 1985: 304316 
[31] 
Izhikevich EM.Neural excitability, spiking and bursting. Int. J. Bifurcation Chaos, 2000, 10(6): 11711266
DOI URL 
[32] 
陈章耀,陈亚光,毕勤胜. 由多平衡态快子系统所诱发的簇发振荡及机理. 力学学报, 2015, 4(4): 699706
DOI URL 
(Chen Zhangyao, ChenYaguang, Bi Qinsheng. Bursting oscillation as well as the bifurcation mechanism induced by fast subsystem with multiple balances. Chinese Journal of Theoretical and Applied Mechanics, 2015, 4(4): 699706 (in Chinese))
DOI URL 

[33] 
Stankevich N, Mosekilde E.Coexistence between silent and bursting states in a biophysical HodgkinHuxleytype of model. Chaos, 2017, 27(12): 123101
DOI URL 
[34] 
夏雨,毕勤胜,罗超等. 双频1:2激励下修正蔡氏振子两尺度耦合行为. 力学学报,2018,50(2): 362372
DOI URL 
(Xia Yu, Bi Qinsheng, Luo Chao, et al.Behaviors of modified Chua's oscillator two time scales under two excitatoins with frequency ratio at 1:2. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 362372 (in Chinese))
DOI URL 

[35] 
Yu Y, Zhao M, Zhang ZD.Novel bursting patterns in a van der PolDuffing oscillator with slow varying external force. Mech. Syst. Signal Proc, 2017, 93: 164174
DOI URL 
[1]  Ma Xindong, Jiang Wenan, Zhang Xiaofang, Han Xiujing, Bi Qinsheng. COMPLICATED BURSTING BEHAVIORS AS WELL AS THE MECHANISM OF A THREE DIMENSIONAL NONLINEAR SYSTEM ^{1)} [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 17891799. 
[2]  Zhang Yi, Han Xiujing, Bi Qinsheng. SERIESMODE PITCHFORKHYSTERESIS BURSTING OSCILLATIONS AND THEIR DYNAMICAL MECHANISMS [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 228236. 
[3]  Qu Zifang, Zhang Zhengdi, Peng Miao, Bi Qinsheng. NONSMOOTH BURSTING OSCILLATION MECHANISMS IN A FILIPPOVTYPE SYSTEM WITH MULTIPLE PERIODIC EXCITATIONS^{1)} [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 11451155. 
[4]  Xia Yu, Bi Qinsheng, Luo Chao, Zhang Xiaofang. BEHAVIORS OF MODIFIED CHUA’S OSCILLATOR TWO TIME SCALES UNDER TWO EXCITATOINS WITH FREQUENCY RATIO AT 1:2 [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 362372. 
Viewed  
Full text 


Abstract 

