Chinese Journal of Theoretical and Applied Mechanics ›› 2019, Vol. 51 ›› Issue (3): 904-911.DOI: 10.6052/0459-1879-18-319
• Dynamics, Vibration and Control • Previous Articles Next Articles
Mengke Wei, Xiujing Han2)(), Xiaofang Zhang, Qinsheng Bi
Received:
2018-09-29
Online:
2019-05-18
Published:
2019-05-28
Contact:
Xiujing Han
CLC Number:
Mengke Wei, Xiujing Han, Xiaofang Zhang, Qinsheng Bi. POSITIVE AND NEGATIVE PULSE-SHAPED EXPLOSION AS WELL AS BURSTING OSCILLATIONS INDUCED BY IT1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 904-911.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 A supercritical Hopf bifurcation in the fast subsystem (2), where the bifurcation value is $\alpha = 0$. The system parameters are $\delta = 0.5$, $\mu = 0.1$, $\beta = 0.05$, $\gamma = 0.1$ and $q = 0.5$, respectively
Fig. 4 Schematic diagram of the rest areas and active area of the fast subsystem, where the equilibrium curve corresponds to the situation of $\mu = 0.999$ in Fig. 2(b) (lower). $A_{\rm r1} $ and $A_{\rm r2} $: the rest areas, $A_{\rm p}$: the active area induced by the positive and negative PSE
Fig. 5 Bursting oscillations of point-point type induced by positive and negative PSE of equilibrium point for $\alpha = - 0.05$, $\beta = 0.05$, $\gamma = 0.1$, $q = 0.5$, $\omega = 0.01$, $\mu = 0.99$
Fig. 7 Bursting oscillations of cycle-cycle type induced by positive and negative PSE of limit cycle for$\alpha = 0.01$, $\beta = 0.05$, $\gamma = 0.1$, $q = 0.5$, $\omega = 0.01$, $\mu = 0.99$
[1] |
Wang Y, Zhang L.Existence of asymptotically stable periodic solutions of a Rayleigh type equation. Nonlinear Analysis, 2009, 71(5): 1728-1735
DOI URL |
[2] |
Han XJ, Xia FB, Zhang C, et al.Origin of mixed-mode oscillations through speed escape of attractors in a Rayleigh equation with multiple-frequency excitations. Nonlinear Dynamics, 2017, 88(4): 2693-2703
DOI URL |
[3] |
Warminski J.Nonlinear normal modes of a self-excited system driven by parametric and external excitations. Nonlinear Dynamics, 2010, 61(4): 677-689
DOI URL |
[4] |
Bikdash M, Balachandran B, Navfeh A.Melnikov analysis for a ship with a general roll-damping model. Nonlinear Dynamics, 1994, 6(1): 101-124
DOI URL |
[5] |
Desai YM, Yu P, Popplewell N, et al.Finite element modelling of transmission line galloping. Computers & Structures, 1995, 57(3): 407-420
DOI URL |
[6] |
Felix JLP, Balthazar JM, Brasil RMLRF.Comments on nonlinear dynamics of a non-ideal Duffing-Rayleigh oscillator: Numerical and analytical approaches. Journal of Sound & Vibration, 2009, 319(3): 1136-1149
DOI URL |
[7] | Warminski J, Balthazar JM.Vibrations of a parametrically and self-excited system with ideal and non-ideal energy sources. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2003, 25(4): 413-420 |
[8] |
Kumar P, Kumar A, Erlicher S.A modified hybrid van der Pol-Duffing-Rayleigh oscillator for modelling the lateral walking force on a rigid floor. Physica D, 2017, 358: 1-14
DOI URL |
[9] |
Tabejieu LMA, Nbendjo BRN, Filatrella G, et al.Amplitude stochastic response of Rayleigh beams to randomly moving loads. Nonlinear Dynamics, 2017, 89(2): 925-937
DOI URL |
[10] |
黄显高,徐健学,何岱海等. 利用小波多尺度分解算法实现混沌系统的噪声减缩. 物理学报,1999,48(10): 1810-1817
DOI URL |
(Huang Xiangao, Xu Jianxue, He Daihai, et al.Reduction of noise in chaotic systems by wavelet multiscaling decomposition algorithm. Acta Phys. Sin, 1999, 48(10): 1810-1817 (in Chinese))
DOI URL |
|
[11] |
王帅,于文浩,陈巨辉等. 鼓泡流化床中流动特性的多尺度数值模拟. 力学学报,2016,48(3): 585-592
DOI URL |
(Wang Shuai, Yu Wenhao, Chen Juhui, et al.Multi-scale simulation on hydrodynamic characteristics in bubbling fluidized bed. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 585-592 (in Chinese))
DOI URL |
|
[12] |
贾宏涛,许春晓,崔桂香. 槽道湍流近壁区多尺度输运特性研究. 力学学报,2007,39(2): 181-187
DOI URL |
(Jia Hongtao, Xu Chunxiao, Cui Guixiang.Multi-scale energy transfer in near-wall region of turbulentchannel flow. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(2): 181-187 (in Chinese))
DOI URL |
|
[13] |
Demongeot J, Bezy-Wendling J, Mattes J, et al.Multiscale modeling and imaging: the challenges of biocomplexity. Proceedings of the IEEE, 2003, 91(10): 1723-1737
DOI URL |
[14] |
Savino GV, Formigli CM.Nonlinear electronic circuit with neuron like bursting and spiking dynamics. Biosystems, 2009, 97(1): 9-14
DOI URL PMID |
[15] |
Lu QS, Gu HG, Yang ZQ, et al.Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: Experiments and analysis. Acta Mech. Sin, 2008, 24(6): 593-628
DOI URL |
[16] |
Sriram K, Gopinathan MS.Effects of delayed linear electrical perturbation of the Belousov-Zhabotinsky reaction: A case of complex mixed mode oscillations in a batch reactor. React. Kinet. Catal. Leu, 2003, 79(2): 341-349
DOI URL |
[17] |
Wu HG, Bao BC, Liu Z, et al.Chaotic and period bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dynamics, 2016, 83(1-2): 893-903
DOI URL |
[18] |
Wang HX, Zheng YH, Lu QS.Stability and bifurcation analysis in the coupled HR neurons with delayed synaptic connection. Nonlinear Dynamics, 2017, 88(3): 2091-2100
DOI URL |
[19] |
陈振阳,韩修静,毕勤胜. 一类二维非自治离散系统中的复杂簇发振荡结构. 力学学报,2017,49(1): 165-174
DOI URL |
(Chen Zhenyang, Han Xiujing, Bi Qinsheng.Complex bursting oscillation structures in a two-dimensional non-autonomous discrete system. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 165-174 (in Chinese))
DOI URL |
|
[20] |
陈振阳,韩修静,毕勤胜. 离散达芬映射中由边界激变所诱发的复杂的张弛振荡. 力学学报,2017,49(6): 1380-1389
DOI URL |
(Chen Zhenyang, Han Xiujing, Bi Qinsheng.Complex relaxation oscillation triggered by boundary crisis in the discrete Duffing map. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1380-1389 (in Chinese))
DOI URL |
|
[21] |
曲子芳,张正娣,彭淼等. 双频激励下Filippov系统的非光滑簇发振荡机理. 力学学报,2018,50(5): 1145-1155
DOI URL |
(Qu Zifang, Zhang Zhengdi, Peng Miao, et al.Non-Smooth bursting oscillation mechanisms in a Filippov-type system with multiple periodic excitations. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1145-1155 (in Chinese))
DOI URL |
|
[22] |
Koper MTM.Bifurcations of mixed-mode oscillations in a three-variable autonomous van der Pol-Duffing model with a cross-shaped phase diagram. Physica D, 1995, 80(1): 72-94
DOI URL |
[23] |
毕勤胜,陈章耀,朱玉萍等.参数激励耦合系统的复杂动力学行为分析. 力学学报, 2003, 35(3): 367-372
DOI URL |
(Bi Qinsheng, Chen Zhangyao, Zhu Yuping, et al.Dynamical analysis of coupled oscillators with parametrical excitation. Chinese Journal of Theoretical and Applied Mechanics, 2003, 35(3): 367-372 (in Chinese))
DOI URL |
|
[24] |
Curtu R.Singular Hopf bifurcations and mixed-mode oscillations in a two-cell inhibitory neural network. Physica D, 2010, 239(9): 504-514
DOI URL |
[25] |
Marino F, Ciszak M, Abdalah SF, et al.Mixed-mode oscillations via canard explosions in light-emitting diodes with optoelectronic feedback.. Phys. Rev E, 2011, 84(4 Pt 2): 047201
DOI URL PMID |
[26] |
Hou JY, Li XH, Zuo DW, et al.Bursting and delay behavior in the Belousov-Zhabotinsky reaction with external excitation. Eur. Phys. J. Plus, 2017, 132(6): 283
DOI URL |
[27] |
Yu Y, Zhang C, Han XJ.Routes to bursting in active control system with multiple time delays. Nonlinear Dynamics, 2017, 88(3): 2241-2254
DOI URL |
[28] | Han XJ, Bi QS, Kurths J.Route to bursting via pulse-shaped explosion. Phys. Rev. E, 2018, 98(1): 010201 |
[29] |
Han XJ, Bi QS, Ji P, et al.Fast-slow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies. Phys. Rev. E, 2015, 92(1): 012911
DOI URL PMID |
[30] | Rinzel J.Bursting oscillations in an excitable membrane model//Sleeman BD, Jarvis RJ. Ordinary and Partial Differential Equations. Berlin: Springer-Verlag , 1985: 304-316 |
[31] |
Izhikevich EM.Neural excitability, spiking and bursting. Int. J. Bifurcation Chaos, 2000, 10(6): 1171-1266
DOI URL |
[32] |
陈章耀,陈亚光,毕勤胜. 由多平衡态快子系统所诱发的簇发振荡及机理. 力学学报, 2015, 4(4): 699-706
DOI URL |
(Chen Zhangyao, ChenYaguang, Bi Qinsheng. Bursting oscillation as well as the bifurcation mechanism induced by fast subsystem with multiple balances. Chinese Journal of Theoretical and Applied Mechanics, 2015, 4(4): 699-706 (in Chinese))
DOI URL |
|
[33] |
Stankevich N, Mosekilde E.Coexistence between silent and bursting states in a biophysical Hodgkin-Huxley-type of model. Chaos, 2017, 27(12): 123101
DOI URL |
[34] |
夏雨,毕勤胜,罗超等. 双频1:2激励下修正蔡氏振子两尺度耦合行为. 力学学报,2018,50(2): 362-372
DOI URL |
(Xia Yu, Bi Qinsheng, Luo Chao, et al.Behaviors of modified Chua's oscillator two time scales under two excitatoins with frequency ratio at 1:2. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 362-372 (in Chinese))
DOI URL |
|
[35] |
Yu Y, Zhao M, Zhang ZD.Novel bursting patterns in a van der Pol-Duffing oscillator with slow varying external force. Mech. Syst. Signal Proc, 2017, 93: 164-174
DOI URL |
[1] | Ma Xindong, Jiang Wenan, Zhang Xiaofang, Han Xiujing, Bi Qinsheng. COMPLICATED BURSTING BEHAVIORS AS WELL AS THE MECHANISM OF A THREE DIMENSIONAL NONLINEAR SYSTEM 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1789-1799. |
[2] | Zhang Yi, Han Xiujing, Bi Qinsheng. SERIES-MODE PITCHFORK-HYSTERESIS BURSTING OSCILLATIONS AND THEIR DYNAMICAL MECHANISMS [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 228-236. |
[3] | Qu Zifang, Zhang Zhengdi, Peng Miao, Bi Qinsheng. NON-SMOOTH BURSTING OSCILLATION MECHANISMS IN A FILIPPOV-TYPE SYSTEM WITH MULTIPLE PERIODIC EXCITATIONS1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1145-1155. |
[4] | Xia Yu, Bi Qinsheng, Luo Chao, Zhang Xiaofang. BEHAVIORS OF MODIFIED CHUA’S OSCILLATOR TWO TIME SCALES UNDER TWO EXCITATOINS WITH FREQUENCY RATIO AT 1:2 [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 362-372. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||