Chinese Journal of Theoretical and Applied Mechanics ›› 2019, Vol. 51 ›› Issue (1): 135-145.DOI: 10.6052/0459-1879-18-164
• Fluid Mechanics • Previous Articles Next Articles
Qiao Chenliang, Xu Heyong2,)(), Ye Zhengyin*
Online:
2019-01-18
Published:
2019-03-01
Contact:
Chenliang Qiao,Heyong Xu,Zhengyin Ye
CLC Number:
Qiao Chenliang, Xu Heyong, Ye Zhengyin. CIRCULATION CONTROL ON WIND TURBINE AIRFOIL WITH BLUNT TRAILING EDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 135-145.
Add to citation manager EndNote|Ris|BibTeX
Parameters | Coarse grid | Medium grid | Fine grid |
---|---|---|---|
wrap-around points | 225 | 450 | 630 |
normal layers | 100 | 200 | 283 |
total number of cells | 2.25X104 | 9.0X104 | 17.8X104 |
first layer spacing (c) | 1.2X10-5 | 0.8X10-5 | 0.6X10-5 |
spacing increasing ratio | 1.20 | 1.13 | 1.10 |
Table 1 Details of the grids employed for the DU97-flatback airfoil
Parameters | Coarse grid | Medium grid | Fine grid |
---|---|---|---|
wrap-around points | 225 | 450 | 630 |
normal layers | 100 | 200 | 283 |
total number of cells | 2.25X104 | 9.0X104 | 17.8X104 |
first layer spacing (c) | 1.2X10-5 | 0.8X10-5 | 0.6X10-5 |
spacing increasing ratio | 1.20 | 1.13 | 1.10 |
Parameters | Coarse grid | Medium grid | Fine grid | cfd[ | Exp[24] |
---|---|---|---|---|---|
Cl | 1.7339 | 1.7292 | 1.7248 | 1.769 | 1.736 |
Cd | 0.050 95 | 0.047 15 | 0.046 30 | 0.046 5 | 0.054 5 |
Table 1 Comparison of lift and drag coefficients
Parameters | Coarse grid | Medium grid | Fine grid | cfd[ | Exp[24] |
---|---|---|---|---|---|
Cl | 1.7339 | 1.7292 | 1.7248 | 1.769 | 1.736 |
Cd | 0.050 95 | 0.047 15 | 0.046 30 | 0.046 5 | 0.054 5 |
[1] | Aubrun S, Leroy A, Devinant P.A review of wind turbine-oriented active flow control strategies. Experiments in Fluids, 2017, 58: 134 |
[2] | Standish KJ, Dam CPV.Aerodynamic analysis of blunt trailing edge airfoils. Journal of Solar Energy Engineering, 2003, 125(4): 479-487 |
[3] | 邓磊, 乔志德, 杨旭东等. 基于RANS方程大型风力机翼型钝尾缘修型气动性能计算. 太阳能学报, 2012, 33(4): 545-551 |
(Deng Lei, Qiao Zhide, Yang Xudong, et al.Aerodynamics performance computational of trailing-edge-blunting methods of flatback airfoil for large wind turbine based on rans equation. Acta Energiae Solaris Sinica, 2012, 33(4): 545-551(in Chinese)) | |
[4] | Manolesos M, Voutsinas SG.Experimental study of drag-reduction devices on a flatback airfoil. AIAA Journal, 2016, 54(11): 3382-3396 |
[5] | Baker JP, Mayda EA, Dam CPV.Experimental analysis of thick blunt trailing-edge wind turbine airfoils. Journal of Solar Energy Engineering, 2006, 128(4): 422-431 |
[6] | Mertes CE, Singh MJ, Strike JA, et al. A study of flatback airfoil in dynamic motion. AIAA paper2011-349, 2011 |
[7] | Sanaye S, Hassanzadeh A.Multi-objective optimization of airfoil shape for efficiency improvement and noise reduction in small wind turbines. Journal of Renewable & Sustainable Energy, 2014, 6(5): 5-15 |
[8] | Baker J, Dam CPV.Drag reduction of blunt trailing-edge airfoil//Milano: International Colloquium on Bluff Bodies Aerodynamics and Applications, 2008: 20-24 |
[9] | 宋科, 郝礼书, 乔志德. 钝后缘翼型的后缘隔板减阻研究. 航空计算技术, 2010, 40(6): 62-65 |
(Song Ke, Hao Lishu, Qiao Zhide.Blunt trailing-edge airfoils drag reduction with splitter. Aeronautical Computing Technique, 2010, 40(6): 62-65(in Chinese)) | |
[10] | Manolesos M, Voutsinas SG.Experimental study of drag-reduction devices on a flatback airfoil. AIAA Journal, 2016, 54(11): 3382-3396 |
[11] | Nikoueeyan P, Strike JA, Magstadt AS, et al.Characterization of the aerodynamic coefficients of a wind turbine airfoil with a gurney flap for flow control applications//Proceedings of the 32nd AIAA Applied Aerodyanmics Conference, Atlanta, 2014: 16-20 |
[12] | Naghiblahouti A, Hangan H, Lavoie P.Distributed forcing flow control in yhe wake of a blunt trailing edge profiled body using plasma actuators. Physics of Fluids, 2015, 27(3): 035110 |
[13] | Englar R, Jones G, Allan B, et al. 2-D circulation control airfoil benchmark experiments intended for cfd code validation. {AIAA Paper}2009-902, 2009 |
[14] | Coanda H.Lifting device Coanda effect. US: 3261162, 1936 |
[15] | Jones GS, Joslin RD. Proceedings of the 2004 NASA/ONR circulation control workshop. NASA/CP: 2005-213509, 2005 |
[16] | Michailidis MG, Kanistras K, Agha M.Robust nonlinear control of the longitudinal flight dynamics of a circulation control fixed wing UAV//IEEE ed. IEEE Conference on Decision and Control, IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, 2017. |
[17] | Chen F, Arieli R.Lift build-up on circulation control airfoils. Journal of Aircraft, 2016, 53(1): 231-242 |
[18] | Forster M, Steijl R. Numerical simulation of transonic circulation control. AIAA Paper20151709, 2015 |
[19] | 宋彦萍, 杨晓光, 李亚超等. 环量控制翼型中柯恩达效应的数值模拟. 工程热物理学报, 2010, 31(9): 1475-1479 |
(Song Yanping, Yang Xiaoguang, Li Yachao, et al.Numerical simulation of coanda effect in circulation control airfoil. Journal of Engineering Thermophysics, 2010, 31(9): 1475-1479(in Chinese)) | |
[20] | Tongchitpakdee C, Benjanirat S, Sankar LN.Numerical studies of the effects of active and passive circulation enhancement concepts on wind turbine performance. Journal of Solar Energy Engineering, 2006, 128(4): 432-444 |
[21] | 冯立好, 王晋军, Choi KS.等离子体环量控制翼型增升的实验研究. 力学学报, 2013, 45(6): 815-821 |
(Feng Lihao, Wang Jinjun, Choi KS.Experimental investigation on lift increment of a plasma circulation control airfoil. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 815-821(in Chinese)) | |
[22] | 张艳华, 李林, 张登成等. 基于等离子体环量控制的翼型气动特性. 强激光与粒子束, 2017, 29(6): 50-55 |
(Zhang Yanhua, Li Lin, Zhang Chengcheng, et al.Aerodynamics of airfoil based on plasma circulation control. High Power Laser and Particle Beams, 2017, 29(6): 50-55(in Chinese)) | |
[23] | 姜裕标, 张刘, 黄勇等. 内吹式襟翼环量控制翼型升力响应特性. 航空学报, 2018, 39(7): 121807 |
(Jiang Yubiao, Zhang Liu, Huang Yong, et al.Lift response characteristics of a circulation control airfoil with internally blown flap. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 121807(in Chinese)) | |
[24] | Barone MF, Berg D. Aerodynamic and aeroacoustic properties of a flatback airfoil: An update. {AIAA Paper}2009271, 2009 |
[25] | Jameson A, Baker TJ. Multigrid solution of the Euler equations for aircraft configurations. AIAA Paper19840093, 1984 |
[26] | Roache PJ.Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 1997, 29(29):123-160 |
[27] | Jones GS, Viken SA, Washburn A E, et al. An active flow circulation controlled flap concept forgeneral aviation aircraft applications. {AIAA paper}20023157, 2002 |
[28] | Sedaghat A, Hassanzadeh A, Jamali J, et al.Determination of rated wind speed for maximum annual energy production of variable speed wind turbines. Applied Energy, 2017, 205: 781-789 |
[29] | Jones GS, Lin JC, Allan BG, et al.Overview of CFD validation experiments for circulation control applications at NASA. International Powered Lift Conference, London, 2008: 22-24 |
[30] | 朱自强, 吴宗成. 环量控制技术研究. 航空学报, 2016, 37(2): 411-428 |
(Zhu Ziqiang, Wu Zongcheng.Study of circulation control technology. Acta Aeronatica et Astronautica Sinica, 2016, 37(2): 411-428(in Chinese)) | |
[31] | Seifert A.Closed-loop active flow control systems: Actuators// King R eds. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Berlin: Springer, 2007 |
[32] | Seifert A, Eliahu S, Greenblatt D, et al.Use of piezoelectric actuators for airfoil separation control (TN). AIAA Journal, 1998, 36(8): 1535-1537 |
[33] | Stalnov O, Kribus A, Seifert A.Evaluation of active flow control applied to wind turbine blade section. Journal of Renewable & Sustainable Energy, 2010, 2: 063101 |
[1] | Kong Lingfa, Dong Yidao, Liu Wei. THE INFLUENCE OF GLOBAL-DIRECTION STENCIL ON GRADIENT AND HIGH-ORDER DERIVATIVES RECONSTRUCTION OF UNSTRUCTURED FINITE VOLUME METHODS 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1334-1349. |
[2] | . The Influence of Global-Direction Stencil on Gradient and High-Order Derivatives of Unstructured Finite Volume Methods [J]. Chinese Journal of Theoretical and Applied Mechanics, 0, 0(0): 0-0. |
[3] | Luo Xin, Wu Songping. AN IMPROVED FIFTH-ORDER WENO-Z+ SCHEME 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939. |
[4] | Nianhua Wang, Xinghua Chang, Rong Ma, Laiping Zhang. VERIFICATION AND VALIDATION OF HYPERFLOW SOLVER FOR SUBSONIC AND TRANSONIC TURBULENT FLOW SIMULATIONS ON UNSTRUCTURED/HYBRID GRIDS1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 813-825. |
[5] | Liu Huixiang, He Guoyi, Wang Qi. NUMERICAL STUDY ON THE AERODYNAMIC PERFORMANCE OF THEFLEXIBLE AND CORRUGATED FOREWING OF DRAGONFLY IN GILDINGFLIGHT [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 94-102. |
[6] | Shao Shuai, Li Ming, Wang Nianhua, Zhang Laiping. HIGH-ORDER DDG/FV HYBRID METHOD FOR VISCOUS FLOW SIMULATION ON UNSTRUCTURED/HYBRID GRIDS1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1470-1482. |
[7] | Ye Youda, Zhang Hanxin, Jiang Qinxue, Zhang Xianfeng. SOME KEY PROBLEMS IN THE STUDY OF AERODYNAMIC CHARACTERISTICS OF NEAR-SPACE HYPERSONIC VEHICLES1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1292-1310. |
[8] | Wan Yunbo, Ma Rong, Wang Nianhua, Zhang Laiping, Gui Yewei. ACCURATE AERO-HEATING PREDICTIONS BASED ON MUL-TI-DIMENSIONAL GRADIENT RECONSTRUCTION ON HYBRID UNSTRUCTURED GRIDS1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1003-1012. |
[9] | Zhang Yang, Zou Jianfeng, Zheng Yao. AN IMPROVED GHOST-CELL IMMERSED BOUNDARY METHOD FOR SOLVING SUPERSONIC FLOW PROBLEMS [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 538-552. |
[10] | Wang Nianhua, Li Ming, Zhang Laiping. ACCURACY ANALYSIS AND IMPROVEMENT OF VISCOUS FLUX SCHEMES IN UNSTRUCTURED SECOND-ORDER FINITE-VOLUME DISCRETIZATION [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 527-537. |
[11] | Tong Fulin, Li Xin, Yu Changping, Li Xinliang. DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208. |
[12] | Wang Nianhua, Zhang Laiping, Zhao Zhong, He Xin. ACCURACY VERIFICATION OF UNSTRUCTURED SECOND-ORDER FINITE VOLUME DISCRETIZATION SCHEMES BASED ON THE METHOD OF MANUFACTURED SOLUTIONS [J]. Chinese Journal of Theoretical and Applied Mechani, 2017, 49(3): 627-637. |
[13] | Deng Kaiwen, Chen Haixin. HYBRID OPTIMIZATION ALGORITHM BASED ON DIFFERENTIAL EVOLUTION AND RBF RESPONSE SURFACE [J]. Chinese Journal of Theoretical and Applied Mechani, 2017, 49(2): 441-455. |
[14] | Shi Lei, Yang Yunjun, Zhou Weijiang. A COMPARATIVE STUDY OF TWO TURBULENCE MODELS FOR MAGNUS EFFECT IN SPINNING PROJECTILE [J]. Chinese Journal of Theoretical and Applied Mechani, 2017, 49(1): 84-92. |
[15] | Tong Fulin, Li Xinliangy, Tang Zhigong. NUMERICAL ANALYSIS OF UNSTEADY MOTION IN SHOCK WAVE/TRANSITIONAL BOUNDARY LAYER INTERACTION [J]. Chinese Journal of Theoretical and Applied Mechani, 2017, 49(1): 93-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||