Chinese Journal of Theoretical and Applied Mechanics ›› 2018, Vol. 50 ›› Issue (2): 197-208.DOI: 10.6052/0459-1879-17-239
• Fluid Mechanics • Next Articles
Tong Fulin*,2)(), Li Xin†**, Yu Changping†, Li Xinliang†**
Received:
2017-06-29
Accepted:
2017-06-29
Online:
2018-03-20
Published:
2018-04-17
CLC Number:
Tong Fulin, Li Xin, Yu Changping, Li Xinliang. DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208.
Add to citation manager EndNote|Ris|BibTeX
Symbol | Comment | |
---|---|---|
E1 | reference point | |
E2 | mean-flow separation | |
E3 | 0 | separation bubble |
E4 | 55 | reattachment region |
Table 1 Selected streamwise positions
Symbol | Comment | |
---|---|---|
E1 | reference point | |
E2 | mean-flow separation | |
E3 | 0 | separation bubble |
E4 | 55 | reattachment region |
.2 | 5.1 | 0.56 | 2.58 |
Table 2 Boundary layer parameters at E1
.2 | 5.1 | 0.56 | 2.58 |
[1] | Dolling DS.Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA Journal, 2001, 39(8): 1517-1530 |
[2] | Gaitonde DV.Progress in shock wave / boundary layer interactions. Progress in Aerospace Sciences, 2015, 72: 80-99 |
[3] | Edwards JR.Numerical simulations of shock/boundary layer interactions using time dependent modeling techniques: A survey of recent results. Progress in Aerospace Sciences, 2008, 44: 447-465 |
[4] | Knight DD.Assessment of CFD capability for prediction of hypersonic shock interactions. Progress in Aerospace Sciences, 2012, 48: 8-26 |
[5] | Dolling DS.High-speed turbulent separated flows: Consistency of mathematical models and flow physics. AIAA Journal, 1998, 36(5): 725-735 |
[6] | Pirozzoli S.Numerical methods for high-speed flows. Annual Reviews of Fluid Mechanics, 2011, 43: 163-194 |
[7] | 李新亮,傅德薰,马延文. 8阶群速度控制格式及其应用.力学学报, 2004, 36(1): 79-83 |
(Li Xinliang, Fu Dexin, Ma Yanwen.Optimized group velocity control scheme. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(1): 79-83 (in Chinese)) | |
[8] | Loginov MS, Adams NA, Zheltovodov AA.Large-eddy simulation of shock wave turbulent boundary layer interaction. Journal of Fluid Mechanics, 2006, 565: 135-169 |
[9] | Adams NA.Direct simulation of the turbulent boundary layer along a compression ramp at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml86-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:math></inline-formula> and <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml87-0459-1879-50-2-197"><mml:mi>R</mml:mi><mml:msub><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>θ</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mi mathvariant="normal"> </mml:mi><mml:mn>685</mml:mn></mml:math></inline-formula>. Journal of Fluid Mechanics, 2000, 420: 47-83 |
[10] | Pirozzoli S, Grasso F.Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml88-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>2.25</mml:mn></mml:math></inline-formula>. Physics of Fluids, 2006, 18: 065113 |
[11] | Wu M, Martin MP.Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA Journal, 2007, 45(4): 879-889 |
[12] | Wu M, Martin MP.Analysis of shock motion in shock wave and turbulent boundary layer interaction using direct numerical simulation data. Journal of Fluid Mechanics, 2008, 594: 71-83 |
[13] | Priebe S, Wu M, Martin MP.Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. Journal of Fluid Mechanics, 2012, 699: 1-49 |
[14] | Helm C, Martin MP, Dupont P.Characterization of the shear layer in a Mach 3 shock/turbulent boundary layer interaction. AIAA paper, 2014, 2014-0941 |
[15] | Li XL, Fu DX, Ma YW.Direct numerical simulation of shock /turbulent boundary layer interaction in a supersonic compression ramp. Science China: Physics, Mechanics & Astronomy, 2010, 53(9): 1651-1658 |
[16] | Fang J, Yao YF, Zheltovodov AA.Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner. Physics of Fluids, 2015, 27: 125104 |
[17] | 傅德薰, 马延文, 李新亮等.可压缩湍流直接数值模拟. 北京: 科学出版社, 2010 |
(Fu Dexun, Ma Yanwen, Li Xinliang, et al.Direct Numerical Simulation of Compressible Turbulence. Beijing: Science Press, 2010 (in Chinese)) | |
[18] | 童福林,李新亮,唐志共.激波与转捩边界层干扰非定常特性数值分析.力学学报, 2017, 49(1): 93-104 |
(Tong Fulin, Li Xinliang, Tang Zhigong.Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104 (in Chinese)) | |
[19] | 李新亮,傅德薰,马延文.基于直接数值模拟的可压缩湍流模型评估和改,力学学报, 2012, 44(2): 222-229 |
(Li Xinliang, Fu Dexun, Ma Yanwen.Assessment of the compressible turbulence model by using the DNS data. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 222-229 (in Chinese)) | |
[20] | Pirozzoli S, Grasso F, Gatski TB.Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml89-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>2.25</mml:mn></mml:math></inline-formula>. Physics of Fluids, 2004, 16: 530-545 |
[21] | Wu X, Moin P.Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. Journal of Fluid Mechanics, 2009, 630: 5-41 |
[22] | Erm LP, Joubert J.Low Reynolds number turbulent boundary layers. Journal of Fluid Mechanics, 1991, 230: 1-44 |
[23] | Jeong J, Hussain F.On the identification of a vortex. Journal of Fluid Mechanics, 1995, 285: 69-94 |
[24] | Li XL, Fu DX, Ma YW.Direct numerical simulation of a spatially evolving supersonic turbulent boundary layer at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml90-0459-1879-50-2-197"><mml:mi mathvariant="italic">Ma</mml:mi><mml:mo>=</mml:mo><mml:mn>6</mml:mn></mml:math></inline-formula>. Chinese Physics Letter, 2006, 23(6): 1519-1522 |
[25] | Grilli M, Hickel S, Adams NA.Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp. International Journal of Heat and Fluid Flow, 2013, 42: 79-93 |
[26] | Pirozzoli S, Bernardini M, Grasso F.Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. Journal of Fluid Mechanics, 2010, 657: 361-393 |
[27] | Pirozzoli S, Bernardini M.Direct numerical simulation database for impinging shock wave/turbulent boundary layer interaction. AIAA Journal, 2011, 49(6): 1307-1312 |
[28] | Clemens NT, Narayanaswamy V.Low frequency unsteadiness of shock wave turbulent boundary layer interactions. Annual Reviews of Fluid Mechanics, 2014, 46: 469-492 |
[29] | Schmid PJ.Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 2010, 656: 5-28 |
[30] | Jovanovic MR, Schmid PJ, Nichols JW.Sparsity promoting dynamic mode decomposition. Physics of Fluids, 2014, 26(2): 024103 |
[1] | Chen Xingxing,Chen Hao,Fan Jingjing,Wen Yufen,Zhang Zheng,Ma Youlin. GENERAL REYNOLDS ANALOGY RELATION ON BLUNT-NOSED BODIES$^{\bf 1)}$ [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1055-1062. |
[2] | Jiang Zonglin, Li Jinping, Hu Zongmin, Liu Yunfeng, Yu Hongru. SHOCK TUNNEL THEORY AND METHODS FOR DUPLICATING HYPERSONIC FLIGHT CONDITIONS1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1283-1291. |
[3] | Hong Zheng, Ye Zhengyin. STUDY ON EVOLUTION CHARACTERISTICS OF ISOTROPIC TURBULENCE PASSING THROUGH A NORMAL SHOCK WAVE1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1356-1367. |
[4] | Ye Youda, Zhang Hanxin, Jiang Qinxue, Zhang Xianfeng. SOME KEY PROBLEMS IN THE STUDY OF AERODYNAMIC CHARACTERISTICS OF NEAR-SPACE HYPERSONIC VEHICLES1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1292-1310. |
[5] | Gao Jun, Li Jia. NUMERICAL INVERSITAGION OF MODE EXCHANGE IN HYPERSONIC BOUNDARY LAYERS [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1368-1378. |
[6] | Gao Wenzhi, Li Zhufei, Zeng Yishan, Yang Jiming. EXPERIMENTAL INVESTIGATIONS OF EFFECTS OF FOREBODY VORTEX GENERATORS ON THE OSCILLATORY FLOW OF AN AXISYMMETRIC HYPERSONIC INLET [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 209-220. |
[7] | Yuan Chaokai, Li Jinping, Chen Hong, Jiang Zonglin, Yu Hongru. EXPERIMENTAL STUDY OF HYPERSONIC OVERFLOW COOLING [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 1-8. |
[8] | Liu Cheng, Ye Zhengyin, Ye Kun. THE EFFECT OF TRANSITON LOCATION ON AEROTHERMOELASTICITY OF A HYPERSONIC ALL-MOVABLE CENTROL SURFACE [J]. Chinese Journal of Theoretical and Applied Mechani, 2017, 49(4): 802-810. |
[9] | Tong Fulin, Li Xinliangy, Tang Zhigong. NUMERICAL ANALYSIS OF UNSTEADY MOTION IN SHOCK WAVE/TRANSITIONAL BOUNDARY LAYER INTERACTION [J]. Chinese Journal of Theoretical and Applied Mechani, 2017, 49(1): 93-104. |
[10] | Su Erlong, Luo Jianjun. NONLINEAR BIFURCATION ANALYSIS OF LATERAL LOSS OF STABILITY FOR HYPERSONIC VEHICLE [J]. Chinese Journal of Theoretical and Applied Mechani, 2016, 48(5): 1192-1201. |
[11] | Hu Shouchao, Cui Kai, Li Guangli, Xiao Yao, Situ Ming. OPTIMIZATION AND ANALYSIS OF THE LEADING EDGE SHAPE FOR HYPERSONIC AIRPLANES BASED ON DOE METHODS [J]. Chinese Journal of Theoretical and Applied Mechani, 2016, 48(2): 290-299. |
[12] | Ye Kun, Ye Zhengyin, Qu Zhan, Wu Xiaojin, Zhang Weiwei. UNCERTAINTY AND GLOBAL SENSITIVITY ANALYSIS OF HYPERSONIC CONTROL SURFACE AEROTHERMOELASTIC [J]. Chinese Journal of Theoretical and Applied Mechani, 2016, 48(2): 278-289. |
[13] | Zhu Dehua, Yuan Xiangjiang, Shen Qing, Chen Lin. NUMERICAL SIMULATION AND MECHANISM ANALYSIS OF HYPERSONIC ROUGHNESS INDUCED TRANSITION [J]. Chinese Journal of Theoretical and Applied Mechani, 2015, 47(3): 381-388. |
[14] | Jiang Zenghui, Song Wei, Chen Nong. HYPERSONIC WIND TUNNEL FREE-FLIGHT TEST WITH BIPLANAR OPTICAL SYSTEM ON THE NON-SPINNING BLUNT CONE [J]. , 2015, 47(3): 406-413. |
[15] | Yang Xiangwen, Wu Jie, Ye Kun, Ye Zhengyin. STUDY ON AEROTHERMOELASTICITY OF A HYPERSONIC ALL-MOVABLE CONTROL SURFACE [J]. , 2014, 46(4): 626-630. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||