1 Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20):2059-2062
2 John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58(23):2486-2489
3 Kushwaha MS, Halevi P, Dobrzynski L, et al. Acoustic band structure of periodic elastic composites. Physical Review Letters, 1993, 71(13):2022-2025
4 Qi MH, Lidorikis E, Rakich PT, et al. A three-dimensional optical photonic crystal with designed point defects. Nature, 2004, 429(6991):538-542
5 Khelif A, Choujaa A, Djafari-Rouhani B, et al. Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasoniccrystal. Physical Review B, 2003, 68(21):214301
6 Notomi M, Yamada K, Shinya A, et al. Extremely large groupvelocity dispersion of line-defect waveguides in photonic crystal slabs. Physical Review Letters, 2001, 87(25):253902
7 Khelif A, Wilm M, Laude V, et al. Guided elastic waves along a rod defect of a two-dimensional phononic crystal. Physical Review E, 2004, 69(6):067601
8 Cubukcu E, Aydin K, Özbay E, et al. Electromagnetic waves:Negative refraction by photonic crystals. Nature, 2003, 423(6940):604-605
9 Yang S, Page JH, Liu Z, et al. Focusing of sound in a 3D phononic crystal. Physical Review Letters, 2004, 93(2):024301
10 Yariv A, Yeh P. Öptical Waves in Crystals-Propagation and Control of Laser Radiation. New York:Wiley, 1984
11 Royer D, Dieulesaint E. Elastic Waves in Solids Ⅱ-Generation Acousto-Öptic Interaction Applications. Berlin:Springer, 2000
12 Boyd RW. Nonlinear Öptics. 2nd ed. San Diego:Academic Press, 2003
13 Damzen MJ, Vlad VI, Babin V, et al. Stimulated Brillouin Scattering. London:IÖP Publishing, 2003
14 Pennec Y, Laude V, Papanikolaou N, et al. Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics, 2014, 3(6):413-440
15 Sadat-Saleh S, Benchabane S, Baida FI, et al. Tailoring simultaneous photonic and phononic band gaps. Journal of Applied Physics, 2009, 106(7):074912
16 Eichenfield M, Chan J, Camacho RM, et al. Öptomechanical crystals. Nature, 2009, 462(7269):78-82
17 Maldovan M, Thomas EL. Simultaneous complete elastic and electromagnetic band gaps in periodic structures. Applied Physics B, 2006, 83(4):595-600
18 Maldovan M, Thomas EL. Simultaneous localization of photons and phonons in two-dimensional periodic structures. Applied Physics Letters, 2006, 88(25):251907
19 Eichenfield M, Camacho R, Chan J, et al. A picogram-and nanometre-scale photonic-crystal optomechanical cavity. Nature, 2009, 459(7246):550-556
20 Laude V, Beugnot JC, Benchabane S, et al. Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Öptics Express, 2011, 19(10):9690-9698
21 Escalante JM, Martinez A, Laude V. Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs. Journal of Applied Physics, 2014, 115(6):064302
22 Lucklum R, Zubtsov M, Öseev A. Phoxonic crystals-A new platform for chemical and biochemical sensors. Analytical and Bioanalytical Chemistry, 2013, 405(20):6497-6509
23 Gomis-Bresco J, Navarro-Urrios D, Öudich M, et al. A onedimensional optomechanical crystal with a complete phononic band gap. Nature Communications, 2014, 5:4452
24 Kipfstuhl L, Guldner F, Riedrich-Moller J, et al. Modeling of optomechanical coupling in a phoxonic crystal cavity in diamond. Öptics Express, 2014, 22(10):12410-12423
25 Rath P, Ummethala S, Diewald S, et al. Diamond electrooptomechanical resonators integrated in nanophotonic circuits. Applied Physics Letters, 2014, 105(25):251102
26 Bria D, Assouar MB, Öudich M, et al. Öpening of simultaneous photonic and phononic band gap in two-dimensional square lattice periodic structure. Journal of Applied Physics, 2011, 109(1):014507
27 Bochmann J, Vainsencher A, Awschalom DD, et al. Nanomechanical coupling between microwave and optical photons. Nature Physics, 2013, 9(11):712-716
28 王艳锋. 含共振单元声子晶体的带隙特性及设计.[博士论文]. 北 京:北京交通大学, 2015 (Wang Yanfeng. Bandgap properties and design of phononic crystals with resonant units.[PhD thesis]. Beijing:Beijing Jiaotong University, 2015 (in Chinese))
29 John SG, Fan S, Villeneuve PR, et al. Guided modes in photonic crystal slabs. Physical Review B, 1999, 60(8):5751-5757
30 Zhou XZ, Wang YS, Zhang CZ. Effects of material parameters on elastic band gaps of two-dimensional solid phononic crystals. Journal of Applied Physics, 2009, 106(1):014903
31 Zhang X, Li LM, Zhang ZQ, et al. Surface states in two-dimensional metallodielectric photonic crystals studied by a multiple-scattering method. Physical Review B, 2001, 63(12):125114
32 Liu Z, Chan CT, Sheng P, et al. Elastic wave scattering by periodic structures of spherical objects:Theory and experiment. Physical Review B, 2000, 62(4):2446-2457
33 Yuan JH, Lu YY. Photonic bandgap calculations with Dirichlet-toNeumann maps. Journal of the Öptical Society of America A, 2006, 23(12):3217-3222
34 Zhen N, Li FL, Wang YS, et al. Bandgap calculation for mixed inplane waves in 2D phononic crystals based on Dirichlet-to-Neumann map. Acta Mechanica Sinica, 2012, 28(4):1143-1153
35 Shi ZJ, Wang YS, Zhang CZ. Band structure calculation of scalar waves in two-dimensional phononic crystals based on generalized multipole technique. Applied Mathematics and Mechanics, 2013, 34(9):1123-1144
36 Shi ZJ, Wang YS, Zhang CZ. Application of the generalized multipole technique in band structure calculation of two-dimensional solid/fluid phononic crystals. Mathematical Methods in the Applied Sciences, 2015, 38(15):1099-1476
37 Li FL, Wang YS, Zhang CZ. Boundary element method for bandgap computation of photonic crystals. Öptics Communications, 2012, 285(5):527-532
38 Li FL, Wang YS, Zhang CZ, et al. Boundary element method for band gap calculations of two-dimensional solid phononic crystals. Engineering Analysis with Boundary Elements, 2013, 37(2):225-235
39 Öskooi AF, Roundy D, Ibanescu M, et al. Meep:A flexible freesoftware package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 2010, 181(3):687-702
40 Taflove A, Hagness SC. Computational Electrodynamics-The Finite-Difference Time-Domain Method. 3rd ed. Norwood:Artech House, 2005
41 Tanaka Y, Tomoyasu Y, Tamura S. Band structure of acoustic waves in phononic lattices:Two-dimensional composites with large acoustic mismatch. Physical Review B, 2000, 62(11):7387-7392
42 Su XX, Wang YF, Wang YS. Effects of Poisson's ratio on the band gaps and defect states in two-dimensional vacuum/solid porous phononic crystals. Ultrasonics, 2012, 52(2):255-265
43 Andonegui I, Garcia-Adeva AJ. The finite element method applied to the study of two-dimensional photonic crystals and resonant cavities. Öptics Express, 2013, 21(4):4072-4092
44 Khelif A, Aoubiza B, Mohammadi S, et al. Complete band gaps in two-dimensional phononic crystal slabs. Physical Review E, 2006, 74(4):046610
45 Wu TT, Hsu JC, Sun JH. Phononic plate waves. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2011, 58(10):2146-2161
46 Zheng H, Zhang CZ, Wang YS, et al. A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals. Journal of Computational Physics, 2016, 305:997-1014
47 Zheng H, Zhang CZ, Wang YS, et al. Band structure computation of in-plane elastic waves in 2D phononic crystals by a meshfree local RBF collocation method. Engineering Analysis with Boundary Elements, 2016, 66:77-90
48 Trigo M, Bruchhausen A, Fainstein A, et al. Confinement of acoustical vibrations in a semiconductor planar phonon cavity. Physical Review Letters, 2002, 89(22):227402
49 Psarobas IE, Papanikolaou N, Stefanou N, et al. Enhanced acoustooptic interactions in a one-dimensional phoxonic cavity. Physical Review B, 2010, 82(17):174303
50 Tang ZH, Jiang ZS, Chen T, et al. Simultaneous microwave photonic and phononic band gaps in piezoelectric-piezomagnetic superlattices with three types of domains in a unit cell. Physics Letters A, 2016, 380:1757-1762
50 Tang ZH, Jiang ZS, Chen T, et al. Simultaneous microwave photonic and phononic band gaps in piezoelectric-piezomagnetic superlattices with three types of domains in a unit cell. Physics Letters A, 2016, 380:1757-1762
51 Qiu M, He S. Öptimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap. Journal of the Öptical Society of America B, 2000, 17(6):1027-1030
52 Chau YF. Intersecting veins effects of a two-dimensional photonic crystal with a large two-dimensional complete bandgap. Öptics Communications, 2009, 282(21):4296-4298
53 Chau YF, Wu FL, Jiang ZH, et al. Evolution of the complete photonic bandgap of two-dimensional photonic crystal. Öptics Express, 2011, 19(6):4862-4867
54 Ma TX, Wang YS, Zhang CZ. Investigation of dual photonic and phononic bandgaps in two-dimensional phoxonic crystals with veins. Öptics Communications, 2014, 312:68-7255 Russell PSJ. Photonic-crystal fibers. Journal of Lightwave Technology, 2006, 24(12):4729-474956 Poli F, Cucinotta A, Selleri S. Photonic Crystal Fibers——Properties and Applications. Dordrecht:Springer, 200757 Russell P, Marin E, Diez A, et al. Sonic band gaps in PCF preforms:Enhancing the interaction of sound and light. Öptics Express, 2003, 11(20):2555-256058 Dainese P, Russell PS, Wiederhecker GS, et al. Raman-like light scattering from acoustic phonons in photonic crystal fiber. Öptics Express, 2006, 14(9):4141-415059 Dainese P, Russell PSJ, Joly N, et al. Stimulated brillouin scattering from multi-Ghz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Physics, 2006, 2(6):388-39260 Kang MS, Nazarkin A, Brenn A, et al. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nature Physics, 2009, 5(4):276-28061 Laude V, Khelif A, Benchabane S, et al. Phononic band-gap guidance of acoustic modes in photonic crystal fibers. Physical Review B, 2005, 71(4):045107
62 Wilm M, Khelif A, Ballandras S, et al. Öut-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials. Physical Review E, 2003, 67(6):065602
63 Khelif A, Djafari-Rouhani B, Laude V, et al. Coupling characteristics of localized phonons in photonic crystal fibers. Journal of Applied Physics, 2003, 94(12):7944-7946
64 Chan J, Safavi-Naeini AH, Hill JT, et al. Öptimized optomechanical crystal cavity with acoustic radiation shield. Applied Physics Letters, 2012, 101(8):081115
65 Fan LR, Sun XK, Xiong C, et al. Aluminum nitride piezo-acoustophotonic crystal nanocavity with high quality factors. Applied Physics Letters, 2013, 102(15):153507
66 Davanco M, Ates S, Liu Y, et al. Si3N4 optomechanical crystals in the resolved-sideband regime. Applied Physics Letters, 2014, 104(4):041101
67 Papanikolaou N, Almpanis E, Gantzounis G, et al. Dual photonicphononic nanocavities for tailoring the acousto-optic interaction. Microelectronic Engineering, 2016, 159:80-83
68 Pennec Y, Djafari-Rouhani B, Li C, et al. Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Advances, 2011, 1(4):041901
69 Mohammadi S, Eftekhar AA, Khelif A, et al. Simultaneous twodimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Öptics Express, 2010, 18(9):9164-9172
70 Pennec Y, Djafari-Rouhani B, El Boudouti EH, et al. Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Öptics Express, 2010, 18(13):14301-14310
71 Gavartin E, Braive R, Sagnes I, et al. Öptomechanical coupling in a two-dimensional photonic crystal defect cavity. Physical Review Letters, 2011, 106(20):203902
72 Li Y, Zheng JJ, Gao J, et al. Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities. Öptics Express, 2010, 18(23):23844-23856
73 El-Jallal S, Öudich M, Pennec Y, et al. Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities. Physical Review B, 2013, 88(20):205410
74 Rolland Q, Dupont S, Gazalet J, et al. Simultaneous bandgaps in LiNbÖ3 phoxonic crystal slab. Öptics Express, 2014, 22(13):16288-16297
75 Safavi-Naeini AH, Painter Ö. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Öptics Express, 2010, 18(14):14926-14943
76 Alegre TPM, Safavi-Naeini A, Winger M, et al. Quasi-twodimensional optomechanical crystals with a complete phononic bandgap. Öptics Express, 2011, 19(6):5658-5669
77 El Hassouani Y, Li C, Pennec Y, et al. Dual phononic and photonic band gaps in a periodic array of pillars deposited on a thin plate.Physical Review B, 2010, 82(15):155405
78 Papanikolaou N, Psarobas IE, Stefanou N. Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals. Applied Physics Letters, 2010, 96(23):231917
79 Akimov AV, Tanaka Y, Pevtsov AB, et al. Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials. Physical Review Letters, 2008, 101(3):033902
80 Ma TX, Wang YS, Wang YF, et al. Three-dimensional dielectric phoxonic crystals with network topology. Öptics Express, 2013, 21(3):2727-2732
81 Zhang X, Zhang ZQ, Chan CT. Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals. Physical Review B, 2001, 63(8):081105
82 Bayindir M, Cubukcu E, Bulu I, et al. Photonic band-gap effect, localization, and waveguiding in the two-dimensional penrose lattice. Physical Review B, 2001, 63(16):161104
83 Wang Y, Hu X, Xu X, et al. Localized modes in defect-free dodecagonal quasiperiodic photonic crystals. Physical Review B, 2003, 68(16):165106
84 Della Villa A, Enoch S, Tayeb G, et al. Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice. Physical Review Letters, 2005, 94(18):183903
85 Ledermann A, Wegener M, von Freymann G. Rhombicuboctahedral three-dimensional photonic quasicrystals. Advanced Materials, 2010, 22(21):2363-2366
86 Lai Y, Zhang X, Zhang ZQ. Large sonic band gaps in 12-fold quasicrystals. Journal of Applied Physics, 2002, 91(9):6191-6193
87 Sutter-Widmer D, Deloudi S, Steurer W. Prediction of braggscattering-induced band gaps in phononic quasicrystals. Physical Review B, 2007, 75(9):094304
88 Chen AL, Wang YS, Guo YF, et al. Band structures of Fibonacci phononic quasicrystals. Solid State Communications, 2008, 145(3):103-108
89 Peng SS, Mei XF, Pang P, et al. Experimental investigation of negative refraction and imaging of 8-fold-symmetry phononic quasicrystals. Solid State Communications, 2009, 149(17-18):667-669
90 Zhang MD, Zhong W, Zhang XD. Defect-free localized modes and coupled-resonator acoustic waveguides constructed in twodimensional phononic quasicrystals. Journal of Applied Physics, 2012, 111(10):104314
91 Feng ZF, Zhang XD, Wang YQ, et al. Negative refraction and imaging using 12-fold-symmetry quasicrystals. Physical Review Letters, 2005, 94(24):247402
92 Yu T, Wang Z, Liu W, et al. Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals. Öptics Express, 2016, 24(8):7951-7959
93 Wang Z, Liu WX, Yu TB, et al. Simultaneous localization of photons and phonons within the transparency bands of LiNbÖ3 phoxonic quasicrystals. Öptics Express, 2016, 24(20):23353-23360
94 Dong HW, Wang YS, Ma TX, et al. Topology optimization of simultaneous photonic and phononic bandgaps and highly effective phoxonic cavity. Journal of the Öptical Society of America B, 2014, 31(12):2946-2955
95 Zhang S, Yin J, Zhang HW, et al. Multi-objective optimization of two-dimensional phoxonic crystals with multi-level substructure scheme. International Journal of Modern Physics B, 2016, 30(9):1650046
96 Dong HW, Wang YS, Zhang CZ. Topology optimization of chiral phoxonic crystals with simultaneously large phononic and photonic bandgaps. IEEE Photonics Journal, 2017, 9(2):4700116
97 Maiman TH. Stimulated optical radiation in ruby. Nature, 1960, 187:493-494
98 Kippenberg TJ, Vahala KJ. Cavity opto-mechanics. Öptics Express, 2007, 15(25):17172-17205
99 Kippenberg TJ, Vahala KJ. Cavity optomechanics:Back-action at the mesoscale. Science, 2008, 321(5893):1172-1176
100 Metcalfe M. Applications of cavity optomechanics. Applied Physics Reviews, 2014, 1(3):031105
101 Aspelmeyer M, Kippenberg TJ, Marquard F. Cavity optomechanics. Reviews of Modern Physics, 2014, 86(4):1391-1452
102 Cleland AN, Roukes ML. External control of dissipation in a nanometer-scale radiofrequency mechanical resonator. Sensors and Actuators A, 1999, 72(3):256-261
103 Cleland AN, Roukes ML. Noise processes in nanomechanical resonators. Journal of Applied Physics, 2002, 92(5):2758-2769
104 Abramovici1 A, Althouse1 WE, Drever RWP, et al. LIGÖ:The laser interferometer gravitational wave observatory. Science, 1992, 256(5055):325-333
105 Arcizet Ö, Cohadon PF, Briant T, et al. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature, 2006, 444(7115):71-74
106 Gigan S, Bohm HR, Paternostro M, et al. Self-cooling of a micromirror by radiation pressure. Nature, 2006, 444(7115):67-70
107 Kippenberg TJ, Rokhsari H, Carmon T, et al. Analysis of radiationpressure induced mechanical oscillation of an optical microcavity. Physical Review Letters, 2005, 95(3):033901
108 Schliesser A, Del'haye P, Nooshi N, et al. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Physical Review Letters, 2006, 97(24):243905
109 Camacho RM, Chan J, Eichenfield M, et al. Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity. Öptics Express, 2009, 17(18):15726-15735
110 Eichenfield M. Cavity optomechanics in photonic and phononic crystals:engineering the interaction of light and sound at the nanoscale.[PhD thesis]. Pasadena:California Institute of Technology, 2010
111 Tsvirkun V. Öptomechanics in hybrid fully-integrated twodimensional photonic crystal resonators.[PhD Thesis]. Paris:Université Paris-Sud XI, 2015
112 Almpanis E, Papanikolaou N, Stefanou N. Breakdown of the linear acousto-optic interaction regime in phoxonic cavities. Öptics Express, 2014, 22(26):31595-31607
113 Rolland Q, Öudich M, El-Jallal S, et al. Acousto-optic couplings in two-dimensional phoxonic crystal cavities. Applied Physics Letters, 2012, 101(6):061109
114 El-Jallal S, Öudich M, Pennec Y, et al. Öptomechanical interactions in two-dimensional si and gaas phoxonic cavities. Journal of Physics-Condensed Matter, 2014, 26(1):015005
115 Ma TX, Zou K, Wang YS, et al. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity. Öptics Express, 2014, 22(23):28443-28451
116 Öudich M, El-Jallal S, Pennec Y, et al. Öptomechanic interaction in a corrugated phoxonic nanobeam cavity. Physical Review B, 2014, 89(24):245122
117 Li YZ, Cui KY, Feng X, et al. Öptomechanical crystal nanobeam cavity with high optomechanical coupling rate. Journal of Öptics, 2015, 17(4):045001
118 Lin TR, Lin CH, Hsu JC. Strong optomechanical interaction in hybrid plasmonic-photonic crystal nanocavities with surface acoustic waves. Scientific Reports, 2015, 5:13782
119 Huang ZL, Cui KY, Li YZ, et al. Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals. Scientific Reports, 2015, 5:15964
120 Hsu JC, Lu TY, Lin TR. Acousto-optic coupling in phoxonic crystal nanobeam cavities with plasmonic behavior. Öptics Express, 2015, 23(20):25814-25826
121 Chan J, Alegre TPM, Safavi-Naeini AH, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478(7367):89-92
122 Safavi-Naeini AH, Groblacher S, Hill JT, et al. Squeezed light from a silicon micromechanical resonator. Nature, 2013, 500(7461):185-189
123 Wu M, Hryciw AC, Healey C, et al. Dissipative and dispersive optomechanics in a nanocavity torque sensor. Physical Review X, 2014, 4(2):021052
124 Balram KC, Davanco M, Lim JY, et al. Moving boundary and photoelastic coupling in gaas optomechanical resonators. Öptica, 2014, 1(6):414-420
125 Grutter KE, Davanco MI, Srinivasan K. Slot-mode optomechanical crystals:A versatile platform for multimode optomechanics. Öptica, 2015, 2(11):994-1001
126 Schneider K, Seidler P. Strong optomechanical coupling in a slotted photonic crystal nanobeam cavity with an ultrahigh quality factorto-mode volume ratio. Öptics Express, 2016, 24(13):13850-13865
127 Huang Z, Cui K, Bai G, et al. High-mechanical-frequency characteristics of optomechanical crystal cavity with coupling waveguide. Scientific Reports, 2016, 6:34160
128 Nomura M. GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators. Öptics Express, 2012, 20(5):5204-5212
129 Zheng JJ, Sun XK, Li Y, et al. Femtogram dispersive L3-nanobeam optomechanical cavities:Design and experimental comparison. Öptics Express, 2012, 20(24):26486-26498
130 Sun XK, Zheng JJ, Poot M, et al. Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity. Nano Letters, 2012, 12(5):2299-2305
127 Huang Z, Cui K, Bai G, et al. High-mechanical-frequency characteristics of optomechanical crystal cavity with coupling waveguide. Scientific Reports, 2016, 6:34160
128 Nomura M. GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators. Öptics Express, 2012, 20(5):5204-5212
129 Zheng JJ, Sun XK, Li Y, et al. Femtogram dispersive L3-nanobeam optomechanical cavities:Design and experimental comparison. Öptics Express, 2012, 20(24):26486-26498
130 Sun XK, Zheng JJ, Poot M, et al. Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity. Nano Letters, 2012, 12(5):2299-2305
131 Shimizu W, Nagai N, Kohno K, et al. Waveguide coupled air-slot photonic crystal nanocavity for optomechanics. Öptics Express, 2013, 21(19):21961-21969
132 Pitanti A, Fink JM, Safavi-Naeini AH, et al. Strong opto-electromechanical coupling in a silicon photonic crystal cavity. Öptics Express, 2015, 23(3):3196-3208
133 Safavi-Naeini AH, Hill JT, Meenehan S, et al. Two-dimensional phononic-photonic band gap optomechanical crystal cavity. Physical Review Letters, 2014, 112:153603
134 Hsiao FL, Hsieh CY, Hsieh HY, et al. High-efficiency acoustooptical interaction in phoxonic nanobeam waveguide. Applied Physics Letters, 2012, 100(17):171103
135 Lin TR, Lin CH, Hsu JC. Enhanced acousto-optic interaction in twodimensional phoxonic crystals with a line defect. Journal of Applied Physics, 2013, 113(5):053508
136 Safavi-Naeini AH, Painter Ö. Proposal for an optomechanical traveling wave phonon-photon translator. New Journal of Physics, 2011, 13:013017
137 Ma TX, Wang YS, Zhang CZ. Simultaneous guiding of slow elastic and light waves in three-dimensional topology-type phoxonic crystals with a line defect. Journal of Öptics, 2014, 16(8):085002
138 Amoudache S, Pennec Y, Djafari-Rouhani B, et al. Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoxonic crystal with defects. Journal of Applied Physics, 2014, 115(13):134503
139 Amoudache S, Moiseyenko R, Pennec Y, et al. Öptical and acoustic sensing using fano-like resonances in dual phononic and photonic crystal plate. Journal of Applied Physics, 2016, 119(11):114502
140 Ma TX, Wang YS, Zhang CZ, et al. Theoretical research on a twodimensional phoxonic crystal liquid sensor by utilizing surface optical and acoustic waves. Sensors and Actuators A, 2016, 242:123-131
141 Kalaee M, Paraïso TK, Pfeifer H. Design of a quasi-2D photonic crystal optomechanical cavity with tunable, large x2-coupling. Öptics Express, 2016, 24(19):21308-21328 |