1 胡海岩, 赵永辉, 黄锐. 飞机结构气动弹性分析与控制研究. 力学学报, 2016, 48(1):1-27 (Hu Haiyan, Zhao Yonghui, Huang Rui. Studies on aeroelastic analysis and control of aircraft structures. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):1-27 (in Chinese))
2 陈桂彬, 邹丛青, 杨超. 气动弹性设计基础. 北京:北京航空航天大学出版社, 2004 (Chen Guibin, Zou Congqing, Yang Chao. Fundamentals of Aeroelastic Design. Beijing:Press of Beijing University of Aeronautics and Astronautics, 2004 (in Chinese))
3 Bismarck-Nasr MN. Kernel function occurring in subsonic unsteady potential flow. AIAA Journal, 1991, 29(6):878-879
4 Rodden WP, Taylor PF, McIntosh SC. Further refinement of the subsonic doublet-lattice method. Journal of Aircraft, 1998, 35(5):720-727
5 Liu F, Cai J, Zhu Y, et al. Calculation of wing flutter by a coupled fluid-structure method. Journal of Aircraft, 2001, 38(2):334-342
6 Marques FD, Anderson J. Identification and prediction of unsteady transonic aerodynamic loads by multi-layer functionals. Journal of Fluids and Structures, 2001, 15(1):83-106
7 Hall KC, Thomas JP, Dowell EH. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA Journal, 2000, 38(10):1853-1862
8 Xie D, Xu M, Dowell EH. Proper orthogonal decomposition reduced-order model for nonlinear aeroelastic oscillations. AIAA Journal, 2014, 52(2):229-241
9 Liu Haojie, Hu Haiyan, Zhao Yonghui, et al. Efficient reduced-order modeling of unsteady aerodynamics robust to flight parameter variations. Journal of Fluids and Structures, 2014, 49(8):728-741
10 Mannarino A, Mantegazza P. Nonlinear aeroelastic reduced order modeling by recurrent neural networks. Journal of Fluids and Structures, 2014, 48:103-121
11 Zhang Weiwei, Wang Bobin, Ye Zhengyin, et al. Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-ordermodels. AIAA Journal, 2012, 50(5):1019-1028
12 陈刚, 徐敏, 陈士橹. 基于 Volterra 级数的非线性非定常气动力 降阶模型. 宇航学报, 2009, 25(5):492-495 (Chen Gang, Xu Min, Chen Shilu. Reduced-order model based on volterra series in nonlinear unsteady aerodynamics. Journal of Astronautics, 2009, 25(5):492-495 (in Chinese))
13 陈刚, 李跃明. 非定常流场降阶模型及应用研究进展与展望. 力学进展, 2011, 41(6):686-701 (Chen Gang, Li Yueming. Advances and prospects of the reduced order model for unsteady flow and its application. Advances in Mechanics, 2011, 41(6):686-701 (in Chinese))
14 Wu Zhigang, Chu Longfei, Yuan Ruizhi, et al. Studies on aeroservoelasticity semi-physical simulation test for missiles. Science China Technological Sciences, 2012, 55(9):2482-2488
15 杨超, 吴志刚. 导弹气动伺服弹性稳定性分析. 飞行力学, 2000, 18(4):1-5 (Yang Chao, Wu Zhigang. Aeroservoelastic stability of missile. Flight Dynamics, 2000, 18(4):1-5 (in Chinese))
16 吴志刚, 杨超. 弹性导弹的连续与离散阵风响应. 北京航空航天大学学报, 2007, 33(2):136-140 (Wu Zhigang, Yang Chao. Continuous and discrete gust responses of elastic missiles. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(2):136-140 (in Chinese))
17 全景阁, 叶正寅, 张伟伟. 轴向载荷对大长细比导弹稳定性的影响研究. 兵工学报, 2015, 36(1):94-102 (Quan Jingge, Ye Zhengyin, Zhang Weiwei. Analysis on stability of a slender missile under axial loads. Acta Armamentarii, 2015, 36(1):94-102 (in Chinese))
18 Huang Rui, Li Hongkun, Hu Haiyan, et al. Open/closed-loop aeroservoelastic predictions via nonlinear, reduced-order aerodynamic models. AIAA Journal, 2015, 53(7):1812-1824
19 Chiuso A, Picci G. Consistency analysis of some closed-loop subspace identification methods. Automatica, 2005, 41(3):377-391
20 Chiuso A. The role of vector autoregressive modeling in predictorbased subspace identification. Automatica, 2007, 43(6):1034-1048
21 Houtzager I, Wingerden JW, Verhaegen M. Recursive predictorbased subspace identification with application to the real-time closed-loop tracking of flutter. IEEE Transactions on Control Systems Technology, 2012, 20(4):934-949
22 Moré JJ. The Levenberg-Marquardt algorithm:implementation and theory//Numerical analysis. Berlin Heidelberg:Springer, 1978:105-116
23 Waszak MR. Modeling the benchmark active control technology wind-tunnel model for application to flutter suppression. AIAA Paper, 1996, 3437
24 McNamara JJ, Friedmann PP. Flutter boundary identification for time-domain computational aeroelasticity. AIAA Journal, 2007, 45(7):1546-1555
25 Borglund D, Ringertz U. Efficient computation of robust flutter boundaries using the mu-k method. Journal of Aircraft, 2006, 43(6):1763-1769
26 Guruswamy GP. Frequency domain flutter boundary computations using Navier-Stokes equations on superclusters. Journal of Aircraft, 2014, 51(5):1640-1642
27 张伟伟, 王博斌, 叶正寅. 跨音速极限环型颤振的高效数值分析方法. 力学学报, 2010, 42(6):1023-1033 (Zhang Weiwei, Wang Bobin, Ye Zhengyin. High efficient numerical method for LCO analysis in transonic flow. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6):1023-1033 (in Chinese))
28 Denegri CM. Limit cycle oscillation flight test results of a fighter with external stores. Journal of Aircraft, 2000, 37(5):761-769
29 Thomas JP, Dowell EH, Hall KC. Modeling viscous transonic limit cycle oscillation behavior using a harmonic balance approach. Journal of Aircraft, 2004, 41(6):1266-1274
30 Chen YM, Liu JK, Meng G. Equivalent damping of aeroelastic system of an airfoil with cubic stiffness. Journal of Fluids and Structures, 2011, 27(8):1447-1454
31 Cui Peng, Han Jinglong. Numerical investigation of the effects of structural geometric and material nonlinearities on limit-cycle oscillation of a cropped delta wing. Journal of Fluids and Structures, 2011, 27(4):611-622
32 Stanford B, Beran P. Direct flutter and limit cycle computations of highly flexible wings for efficient analysis and optimization. Journal of Fluids and Structures, 2013, 36(1):111-123 |