1 Oldham KB, Spanier J. The Fractional Calculus. San Diego:Academic Press, 1974
2 Podlubny I. Fractional Differential Equations. San Diego:Academic Press, 1999
3 Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Amsterdam:Elsevier B V, 2006
4 Riewe F. Nonconservative Lagrangian and Hamiltonian mechanics. Physical Review E, 1996, 53(2):1890-1899
5 Riewe F. Mechanics with fractional derivatives. Physical Review E, 1997, 55(3):3581-3592
6 Agrawal OP. Formulation of Euler-Lagrange equations for fractional variational problems. Journal of Mathematical Analysis and Applications, 2002, 272(1):368-379
7 Agrawal OP. Fractional variational calculus in terms of Riesz fractional derivatives. Journal of Physics A:Mathematical and Theoretical, 2007, 40(24):6287-6303
8 Baleanu D, Avkar T. Lagrangians with linear velocities within Riemann-Liouville fractional derivatives. Nuovo Cimento B, 2003, 119(1):73-79
9 Baleanu D, Trujillo JJ. A new method of finding the fractional EulerLagrange and Hamilton equations within Caputo fractional derivatives. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(5):1111-1115
10 Atanackovi? TM, Konjik S, Pilipovi? S. Variational problems with fractional derivatives:Euler-Lagrange equations. Journal of Physics A:Mathematical and Theoretical, 2008, 41(9):095201
11 Atanackovi? TM, Konjik S, Oparnica Lj, et al. Generalized Hamilton's principle with fractional derivatives. Journal of Physics A:Mathematical and Theoretical, 2010, 43(25):255203
12 Almeida R, Torres DFM. Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(3):1490-1500
13 Malinowska AB, Torres DFM. Introduction to the Fractional Calculus of Variations. London:Imperial College Press, 2012
14 Frederico GSF, Torres DFM. A formulation of Noether's theorem for fractional problems of the calculus of variations. Journal of Mathematical Analysis and Applications, 2007, 334(2):834-846
15 Frederico GSF, Torres DFM. Fractional isoperimetric Noether's theorem in the Riemann-Liouville sense. Reports on Mathematical Physics, 2013, 71(3):291-304
16 Frederico GSF. Fractional optimal control in the sense of Caputo and the fractional Noether's theorem. International Mathematical Forum, 2008, 3(10):479-493
17 Frederico GSF, Torres DFM. Fractional Noether's theorem in the Riesz-Caputo sense. Applied Mathematics and Computation, 2010, 217(3):1023-1033
18 Frederico GSF, Lazo MJ. Fractional Noether's theorem with classical and Caputo derivatives:constants of motion for non-conservative systems. Nonlinear Dynamics, 2016, 85(2):839-851
19 Atanackovi? TM, Konjik S, Pilipovi? S, et al. Variational problems with fractional derivatives:invariance conditions and Noether's theorem. Nonlinear Analysis:Theory, Methods & Applications, 2009, 71(5-6):1504-1517
20 Odzijewicz T, Malinowska AB, Torres DFM. Noether's theorem for fractional variational problems of variable order. Central European Journal of Physics, 2013, 11(6):691-701
21 Zhang SH, Chen BY, Fu JL. Hamilton formalism and Noether symmetry for mechanico-electrical systems with fractional derivatives. Chinese Physics B, 2012, 21(10):100202
22 Zhou S, Fu H and FuJL. Symmetry theories of Hamiltonian systems with fractional derivatives. Science China Physics, Mechanics & Astronomy, 2011, 54(10):1847-1853
23 Luo SK, Li L. Fractional generalized Hamiltonian equations and its integral invariants. Nonlinear Dynamics, 2013, 73(1):339-346
24 Luo SK, Li L. Fractional generalized Hamiltonian mechanics and Poisson conservation law in terms of combined Riesz derivatives. Nonlinear Dynamics, 2013, 73(1):639-647
25 Jia QL, Wu HB, Mei FX. Noether symmetries and conserved quantities for fractional forced Birkhoffian systems. Journal of Mathematical Analysis and Applications, 2016, 442(2):782-795
26 Zhang Y, Zhou Y. Symmetries and conserved quantities for fractional action-like Pfaffian variational problems. Nonlinear Dynamics, 2013, 73(1-2):783-793
27 Zhang Y, Zhai XH. Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dynamics, 2015, 81(1-2):469-480
28 Long ZX, Zhang Y. Noether's theorem for fractional variational problem from El-Nabulsi extended exponentially fractional integral in phase space. Acta Mechanica, 2014, 225(1):77-90
29 El-Nabulsi RA. Fractional variational symmetries of Lagrangians, the fractional Galilean transformation and the modified Schrödinger equation. Nonlinear Dynamics, 2015, 81(1):939-948
30 Zhai XH, Zhang Y. Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay. Communications in Nonlinear Science and Numerical Simulation, 2016, 36:81-97
31 Yan B, Zhang Y. Noether's theorem for fractional Birkhoffian systems of variable order. Acta Mechanica, 2016, 227(9):2439-2449
32 梅凤翔. 李群和李代数对约束力学系统的应用. 北京:科学出版 社, 1999 (Mei Fengxiang. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Beijing:Science Press,1999 (in Chinese))
33 梅凤翔, 吴惠彬, 李彦敏等. Birkhoff 力学的研究进展. 力学学报, 2016, 48(2):263-268 (Mei Fengxiang, Wu Huibin, Li Yanmin, et al. Advances in research on Birkhoffian mechanics. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2):263-268 (in Chinese))
34 张毅. 相空间中非保守系统的 Herglotz 广义变分原理及其 Noether 定理. 力学学报, 2016, 48(6):1382-1389 (Zhang Yi. Generalized variational principle of Herglotz type for nonconservative system in phase space and Noether's theorem. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6):1382-1389 (in Chinese))
35 Luo SK, Xu YL. Fractional Birkhoffian mechanics. Acta Mechanica, 2015, 226(3):829-844  |