EI、Scopus 收录
中文核心期刊
吕阳, 方虹斌, 徐鉴, 马建敏, 王启宁, 张晓旭. 四连杆膝关节假肢的动力学建模与分析[J]. 力学学报, 2020, 52(4): 1157-1173. DOI: 10.6052/0459-1879-20-048
引用本文: 吕阳, 方虹斌, 徐鉴, 马建敏, 王启宁, 张晓旭. 四连杆膝关节假肢的动力学建模与分析[J]. 力学学报, 2020, 52(4): 1157-1173. DOI: 10.6052/0459-1879-20-048
Lü Yang, Fang Hongbin, Xu Jian, Ma Jianmin, Wang Qining, Zhang Xiaoxu. DYNAMIC MODELING AND ANALYSIS OF THE LOWER LIMB PROSTHESIS WITH FOUR-BAR LINKAGE PROSTHETIC KNEE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1157-1173. DOI: 10.6052/0459-1879-20-048
Citation: Lü Yang, Fang Hongbin, Xu Jian, Ma Jianmin, Wang Qining, Zhang Xiaoxu. DYNAMIC MODELING AND ANALYSIS OF THE LOWER LIMB PROSTHESIS WITH FOUR-BAR LINKAGE PROSTHETIC KNEE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1157-1173. DOI: 10.6052/0459-1879-20-048

四连杆膝关节假肢的动力学建模与分析

DYNAMIC MODELING AND ANALYSIS OF THE LOWER LIMB PROSTHESIS WITH FOUR-BAR LINKAGE PROSTHETIC KNEE

  • 摘要: 相比于单轴式膝关节,四连杆膝关节具有更好的仿生特性和运动安全性,因而在下肢假肢研究中得到广泛关注. 本研究以一款四连杆膝关节被动假肢为研究对象,主要关注足-地交互作用力以及膝关节单边接触力等强非线性因素对下肢假肢步态的影响. 为此,采用 Kelvin-Voigt 模型和库伦模型描述足-地接触力和摩擦力,并采用 Kelvin-Voigt 模型描述膝关节单边接触力,从而基于第一类拉格朗日方程建立假肢动力学模型. 本研究以步态实验测得的髋关节运动数据为模型的驱动信号,针对假肢的步态特征进行了数值分析. 计算结果显示,当膝关节液压阻尼器的刚度较小时,强非线性作用力会使假肢产生显著的亚谐波响应,进而导致步态周期失谐. 进一步研究发现,提胯行为能够避免步态周期失谐,这也为残疾人行走时的提胯等代偿行为提供了一种新的力学解释. 为了评价假肢步态与健康人实测步态的一致性,本研究进一步定义了步态相关系数并分析了膝关节液压阻尼器刚度、阻尼参数对相关系数的影响. 结果表明,通过合理的刚度、阻尼参数设计,两者步态的相关系数可达到 0.9 以上,这为四连杆膝关节被动假肢进一步优化提供了理论支撑.

     

    Abstract: The four-bar linkage prosthetic knee has attracted widespread attention in the study of lower limb prosthesis because it shows a better bionic feature and a higher locomotive safety than the uniaxial joint prosthetic knee. Based on a real four-bar linkage prosthetic knee, this paper mainly studies the strongly nonlinear effects, e.g. the foot-ground interaction force and the unilateral constraint force of knee joint, on the gait of the lower limb prosthesis. For this purpose, firstly, the Kelvin-Voigt contact model is adopted to represent the effect of foot-ground contact force and the unilateral constraint force of the knee joint. The Coulomb model is employed to describe the effect of foot-ground friction force. Then, the Lagrange equations of the first kind are applied to model the dynamics of the prosthesis. Based on this model, the measured hip joint motion of an able-bodied testee is used as the driven signal and the gait characteristics analysis is conducted numerically. The numerical results reveal that if the stiffness of the hydraulic cylinder, which supports the motion of the prosthetic knee joint, is small, the strongly nonlinear effects may lead to the remarkable subharmonic response, which further results in the so-called gait inconformity. Further research shows that the subharmonic response can be avoided by lifting the hip joint, which provides a new insight into the compensatory mechanism such as lifting the hip for the amputee walking from the view of mechanics. In order to evaluate the consistence of the gaits between the prosthesis and the able-bodied testee, this paper further defines the correlation coefficient and analyzes the effects of the hydraulic cylinder's stiffness and damping on this coefficient. The results show that the correlation coefficient of the gaits can be better than 0.9 with proper stiffness and damping design. This discovery provides a solid foundation for further optimization of the four-bar linkage prosthesis.

     

/

返回文章
返回