EI、Scopus 收录
中文核心期刊

大型柔性航天器动力学与振动控制研究进展

曹登庆, 白坤朝, 丁虎, 周徐斌, 潘忠文, 陈立群, 詹世革

曹登庆, 白坤朝, 丁虎, 周徐斌, 潘忠文, 陈立群, 詹世革. 大型柔性航天器动力学与振动控制研究进展[J]. 力学学报, 2019, 51(1): 1-13. DOI: 10.6052/0459-1879-18-054
引用本文: 曹登庆, 白坤朝, 丁虎, 周徐斌, 潘忠文, 陈立群, 詹世革. 大型柔性航天器动力学与振动控制研究进展[J]. 力学学报, 2019, 51(1): 1-13. DOI: 10.6052/0459-1879-18-054
Cao Dengqing, Bai Kunchao, Ding Hu, Zhou Xubin, Pan Zhongwen, Chen Liqun, Zhan Shige. ADVANCES IN DYNAMICS AND VIBRATION CONTROL OF LARGE-SCALE FLEXIBLE SPACECRAFT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 1-13. DOI: 10.6052/0459-1879-18-054
Citation: Cao Dengqing, Bai Kunchao, Ding Hu, Zhou Xubin, Pan Zhongwen, Chen Liqun, Zhan Shige. ADVANCES IN DYNAMICS AND VIBRATION CONTROL OF LARGE-SCALE FLEXIBLE SPACECRAFT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 1-13. DOI: 10.6052/0459-1879-18-054
曹登庆, 白坤朝, 丁虎, 周徐斌, 潘忠文, 陈立群, 詹世革. 大型柔性航天器动力学与振动控制研究进展[J]. 力学学报, 2019, 51(1): 1-13. CSTR: 32045.14.0459-1879-18-054
引用本文: 曹登庆, 白坤朝, 丁虎, 周徐斌, 潘忠文, 陈立群, 詹世革. 大型柔性航天器动力学与振动控制研究进展[J]. 力学学报, 2019, 51(1): 1-13. CSTR: 32045.14.0459-1879-18-054
Cao Dengqing, Bai Kunchao, Ding Hu, Zhou Xubin, Pan Zhongwen, Chen Liqun, Zhan Shige. ADVANCES IN DYNAMICS AND VIBRATION CONTROL OF LARGE-SCALE FLEXIBLE SPACECRAFT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 1-13. CSTR: 32045.14.0459-1879-18-054
Citation: Cao Dengqing, Bai Kunchao, Ding Hu, Zhou Xubin, Pan Zhongwen, Chen Liqun, Zhan Shige. ADVANCES IN DYNAMICS AND VIBRATION CONTROL OF LARGE-SCALE FLEXIBLE SPACECRAFT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 1-13. CSTR: 32045.14.0459-1879-18-054

大型柔性航天器动力学与振动控制研究进展

基金项目: 1)国家自然科学基金资助项目(11732005, 11742016)
详细信息
    作者简介:

    作者简介: 2)曹登庆,教授,主要研究方向:非线性动力学、航天器动力学与控制、结构动力学与振动控制.E-mail: dqcao@hit.edu.cn

    通讯作者:

    曹登庆

    曹登庆,白坤朝,丁虎,周徐斌,潘忠文,陈立群,詹世革

    曹登庆,白坤朝,丁虎,周徐斌,潘忠文,陈立群,詹世革

    周徐斌

    曹登庆,白坤朝,丁虎,周徐斌,潘忠文,陈立群,詹世革

    曹登庆,白坤朝,丁虎,周徐斌,潘忠文,陈立群,詹世革

    曹登庆,白坤朝,丁虎,周徐斌,潘忠文,陈立群,詹世革

  • 中图分类号: V411.4,V448;

ADVANCES IN DYNAMICS AND VIBRATION CONTROL OF LARGE-SCALE FLEXIBLE SPACECRAFT

  • 摘要: 随着航天重大工程的逐步实施,航天器正朝着超高速、超大尺度、多功能的方向发展,其面临的发射和运行环境也更加恶劣.航天器发射过程中的振动及其主/被动控制、在轨运行中大型柔性航天器动力学建模与动态响应分析、结构振动与飞行器姿态的混合控制等问题越来越复杂且难于处理;航天器结构的大型化和柔性化(如大阵面天线和太阳翼等)也对其地面试验和半实物仿真提出了挑战.本文着重介绍大型柔性航天器涉及到的动力学与振动控制问题,包括航天器发射过程中的整星隔振,大型柔性结构动力学建模与振动响应分析,大型柔性航天器的结构振动与姿轨控耦合动力学及其混合控制等.提炼出航天动力学与控制领域中亟待解决的若干基础科学问题,包括:多刚柔体系统动力学建模与模型降阶(涉及大变形柔性体动力学建模、多求解器合作仿真、模型降阶、组合结构动力学建模的解析方法等);复杂结构状态空间模型构建方法与能控性(涉及状态空间模型构建的理论与实验方法、复杂结构振动控制系统的能观性与能控性等);航天器姿态运动与大型柔性结构振动的混合控制律设计(涉及姿态机动与结构振动的鲁棒混合控制、执行机构与压电控制器的协同控制等).
    Abstract: With the gradual implementation of the major projects in aerospace engineering, the spacecraft design is heading towards the direction of ultra-high speed, large scale and multi-function, and its launching and operating environment is likely to worsen. The problems on vibration and active and/or passive control in spacecraft launching process, dynamic modeling and response analysis of large flexible spacecraft in orbit, and the hybrid control of structural vibration and attitude maneuver of the spacecraft are getting more and more complicated and difficult to deal with. The enlarged scale and increased flexibility of the spacecraft structure (suchas the large aperture antenna and solar panels) present a challenge to the ground test and semi-physical simulation. The dynamics and control problems involved in the large-scale flexible spacecraft such as the whole-spacecraft vibration isolation in the spacecraft lunching process, the dynamic modeling and vibration response analysis of large-scale flexible structures, and the coupling dynamics and hybrid control of structural vibration and attitude and or orbital maneuver of the large-scale flexible spacecraft are presented. The key scientific issues seriously in the fields of spacecraft dynamics and control could then be extracted as follows: the dynamic modeling and order reduction of multi-rigid flexible body systems (including the dynamic modeling of the flexible structure with large deformation, the collaborate simulations with multi-solvers, model reductions, the analytical approach for the dynamic modeling of composite structures, etc.), the construction of state space model of complicated structures and its controllability investigation (including the theoretical and experiment methods of the state space model formulation, the observability and controllability of the control system for complex structures, etc.), and the design of hybrid control law of structural vibration and attitude maneuver for the large-scale flexible spacecraft (concerning the robust hybrid control of attitude maneuver and structural vibration, the collaborative control of actuating mechanism and piezoelectric actuator, etc.
  • [1] 黄文虎, 曹登庆, 韩增尧. 航天器动力学与控制的研究进展与展望. 力学进展, 2012, 42(4): 367-394
    [1] (HuangWenhu, Cao Dengqing,Han Zengyao. Advances and trends in dynamics and control of spacecraft.Advances in Mechanics, 2012, 42(4): 367-394 (in Chinese))
    [2] 孟光,周徐斌,苗军. 航天重大工程中的力学问题. 力学进展,2016, 46(6): 467-322
    [2] (Meng Guang, Zhou Xubin, Miao Jun.Mechanical problems in momentous projects of aerospace engineering. Advances in Mechanics, 2016, 46: 467-322 (in Chinese))
    [3] 马兴瑞,于登云,韩增尧等. 星箭力学环境分析与试验技术研究进展. 宇航学报, 2006, 27(3): 323-331
    [3] (Ma Xingrui, Yu Dengyun,Han Zengyao, et al.Research evolution on the satellite-rocket mechanical environment analysis and test technology.Journal of Astronautics, 2006, 27(3): 323-331 (in Chinese))
    [4] 王庆伟, 谭述君, 吴志刚等. 大型液体火箭姿控与跷振大回路耦合动力学建模与分析. 力学学报, 2015, 47(5): 789-798
    [4] (Wang Qingwei, Tan Shujun, Wu Zhigang, et al.Dynamic modeling and analysis of large-loop coupled by attitude control and pogo for large liquid rockets.Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 789-798 (in Chinese))
    [5] 张军, 谌勇, 骆剑等. 整星隔振技术的研究现状和发展. 航空学报, 2006, 26(2): 179-183
    [5] (Zhang Jun, Chen Yong, Luo Jian, et al.Review of the whole-spacecraft isolation techniques.Acta Aeronauticaet Astronautica Sinica, 2006, 26(2): 179-183 (in Chinese))
    [6] Wilke PS, Johnson CD, Fosness ER.Whole-spacecraft passive launch isolation.Journal of Spacecraft and Rockets, 1998, 35(5): 690-694
    [7] Wilke PS, Johnson CD. Recent launches using the softride wholespacecraft vibration isolation system// Proceedings of the AIAA Space 2001 Conference, Albuquerque,NM, 2001: AIAA-2001-4078
    [8] Liu LK, Liang L, Zheng GT, et al.Dynamic design of octo-strut platform for launch stage whole-spacecraft vibration isolation.Journal of Spacecraft and Rockets, 2005, 42(4): 654-662
    [9] Wang Z, Liu LK, Zheng GT.Optimal design of octo-strut vibration isolation platform.Journal of Guidance, Control, and Dynamics, 2006, 29(3): 749-753
    [10] Zhang YW, Fang B, Chen Y.Vibration isolation performance evaluation of the discrete whole-spacecraft vibration isolation platform for flexible spacecraft.Meccanica, 2012, 47: 1185-1195
    [11] Yang K, Zhang YW, Ding H, et al.Nonlinear energy sink for wholespacecraft vibration reduction.Journal of Vibration and Acoustics, 2017, 139: 021011
    [12] 陆泽琦,陈立群. 非线性被动隔振的若干进展. 力学学报, 2017, 49(3): 550-564
    [12] (Lu Zeqi, Chen Liqun.Some recent progresses in nonlinear passive isolations of vibrations.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 550-564 (in Chinese))
    [13] Thayer D, Campbell M, Vagners J.Six-axis vibration isolation system using soft actuators and multiple sensors.Journal of Spacecraft and Rockets, 2002, 39(2): 206-212
    [14] Marne_e B, Avraam M, Deraemaeker A, et al. Vibration isolation of precision payloads: A six-axis electromagnetic relaxation isolator.Journal of Guidance, Control, and Dynamics, 2009, 32(2): 395-401
    [15] Zhang Y, Zang J, Fang B, et al.Dynamic characteristics of integrated active and passive whole-spacecraft vibration isolation platform based on non-probabilistic reliability.Transactions of the Japan Society for Aeronautical and Space Sciences, 2014, 57(5): 263-271
    [16] Yang X, Wu H, Li Y, et al.Dynamic isotropic design and decentralized active control of a six-axis vibration isolator via Stewart plat form.Mechanism and Machine Theory, 2017, 117: 244-252
    [17] Chi W, Cao D, Wang D, et al.Design and experimental study of a VCM-based Stewart parallel mechanism used for active vibration isolation.Energies, 2015, 8: 8001-8019
    [18] Wu Y, Yu K, Jiao J, et al.Dynamic isotropy design and analysis of a six-DOF active micro-vibration isolation manipulator on satellites.Robotics and Computer-Integrated Manufacturing, 2018, 49: 408-425
    [19] Tang J, Cao D, Yu T.Decentralized vibration control of a VCM-Based Stewart parallel mechanism: simulation and experiments.Journal of Mechanical Engineering Science, 2018. DOI: 10.1177/0954406218756941
    [20] 胡海岩,田强,张伟等. 大型网架式可展开空间结构的非线性动力学与控制. 力学进展, 2013, 43(4): 390-414
    [20] (Hu Haiyan, Tian Qiang, Zhang Wei, et al.Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes.Advances in Mechanics, 2013, 43(4): 390-414(in Chinese))
    [21] 曲广吉. 航天器动力学技术的发展和挑战. 强度与环境, 2003, 30(4): 1-6
    [21] (Qu Guangji.Development and challenge of spacecraft dynamics technology.Structure and Environment Engineering, 2003, 30(4): 1-6 (in Chinese))
    [22] 曲广吉. 复合柔性结构航天器动力学建模研究. 中国工程科学, 1999, 1(2): 52-56
    [22] (Qu Guangji.Dynamics modeling of spacecraft with composite flexible structures.Engineering Science, 1999, 1(2): 52-56(in Chinese))
    [23] 缪炳祺,曲广吉,夏邃勤等. 关于柔性航天器动力学模型降阶问题. 中国工程科学, 2001, 3(11): 60-64
    [23] (Liao Bingqi, Qu Guangji, Xia Suiqin, et al.On the order reduction of dynamics models of flexible spacecraft.Engineering Science, 2001, 3(11): 60-64 (in Chinese))
    [24] Mettler E, Quadrelli MB.Multibody dynamics modeling of segmented booms of the mars express spacecraft.Journal of Spacecraft and Rockets, 2005, 42(3): 523-529
    [25] 蒋建平,李东旭. 带太阳帆板航天器刚柔耦合动力学研究. 航空学报, 2006, 27(3): 418-422
    [25] (Jiang Jianping and Li Dongxu. Research on rigid-flexible coupling dynamics of spacecraft with solar panel.Acta Aeronauticaet Astronautica Sinica, 2006, 27(3): 418-422 (in Chinese))
    [26] 张越, 赵阳, 谭春林等. ANCF 索梁单元应变耦合问题与模型解耦. 力学学报, 2016, 48(6): 1406-1415
    [26] (Zhang Yue, Zhao Yang, Tan Chunlin, et al.The strain coupling problem and model decoupling of ANCF cable/beam element.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1406-1415 (in Chinese))
    [27] 章孝顺, 章定国, 洪嘉振. 考虑曲率纵向变形效应的大变形柔性梁刚柔耦合动力学建模与仿真. 力学学报, 2016, 48(3): 692-701
    [27] (Zhang Xiaoshun, Zhang Dingguo, Hong Jiazhen.Rigid-flexible coupling dynamic modeling and simulation with the longitudinal deformation induced curvature e_ect for a rotating flexible beam under large deformation.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 692-701 (in Chinese))
    [28] 和兴锁,邓峰岩,张烈霞等. 大型空间刚柔耦合组合体的动力学建模. 机械科学与技术, 2004, 23(5): 543-545
    [28] (He Xingsuo, Deng Fengyan, Zhang Liexia, et al.Dynamics modeling of large coupled rigid flexible space platform system.Mechanical Science and Technology, 2004, 23(5): 543-545 (in Chinese))
    [29] 方柳,刘玉亮,赵桂平. 考虑动力刚化的挠性航天器的动力学建模与分析. 兵器装备工程学报, 2017, 38(9): 67-72
    [29] (Fang Niu, Liu Yuliang, Zhao Guiping.Dynamic modeling and analysis for flexible spacecraft with dynamic sti_ening.Journal of Ordnance Equipment Engineering, 2017, 38(9): 67-72 (in Chinese))
    [30] Xu W, Meng D, Chen Y, et al.Dynamics modeling and analysis of a flexible-base space robot for capturing large flexible spacecraft.Multibody System Dynamics, 2014, 32(3): 357-401
    [31] 郭其威,吴松,刘芳等. 航天器柔性附件对整器固有振动特性影响因素及规律分析. 振动与冲击, 2016, 35(6): 187-191
    [31] (Guo Qiwei, Wu Song, Liu Fang, et al.The e_ect and change rule of spacecraft flexible annex on system natural vibration characteristics.Journal of Vibration and Shock, 2016, 35(6): 187-191 (in Chinese))
    [32] 胡海岩,田强,张伟等. 大型网架式可展开空间结构的非线性动力学与控制. 力学进展, 2013, 43(4): 390-414
    [32] (Hu Haiyan, Tian Qiang, Zhang Wei, et al.Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes.Advances in Mechanics, 2013, 43(4): 390-414(in Chinese))
    [33] 王巍,于登云,马兴瑞. 航天器铰接结构非线性动力学特性研究进展. 力学进展, 2006, 36(2): 233-238
    [33] (Wang Wei, Yu Dengyun, Ma Xingrui.Advances and trends of non-linear dynamics of space joint-dominated structure.Advances in Mechnics, 2006, 36(2): 233-238 (in Chinese))
    [34] 曹登庆, 初世明, 李郑发等. 空间可展机构非光滑力学模型和动力学研究. 力学学报, 2013, 45(1): 3-15
    [34] (Cao Dengqing, Chu Shiming, Li Zhengfa, et al.Study on the non-smooth mechanical models and dynamics for space deployable mechanisms.Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 3-15 (in Chinese))
    [35] 白争锋,赵阳,田浩. 含铰间间隙太阳帆板展开动力学仿真. 哈尔滨工业大学学报, 2009, 41(3): 11-14
    [35] (Bai Zhengfeng, Zhao Yang, Tian Hao.Dynamics and simulation of deployment for solar panels with hinge clearance.Journal of Harbin Institute of Technology, 2009, 41(3): 11-14 (in Chinese))
    [36] 阎绍泽, 申永胜, 陈洪彬. 考虑杆件柔性和铰间隙的可展结构动力学数值模拟. 清华大学学报(自然科学版), 2003, 43(2): 145-148
    [36] (Yan Shaoze, Shen Yongsheng, Chen Hongbin.Dynamic performance of deployable structures with flexible members and clearance connections.J Tsinghua Univ (Sci & Tech), 2003, 43(2): 145-148 (in Chinese))
    [37] 尉飞,郑钢铁. 具有非线性连接的航天器非线性振动分析. 振动工程学报, 2009, 22(4): 329-334
    [37] (Wei Fei, Zheng Gangtie.Nonlinear dynamics of spacecraft with nonlinear joints.Journal of Vibration Engineering, 2009, 22(4): 329-334 (in Chinese))
    [38] 刘福寿, 金栋平. 环形桁架结构径向振动的等效圆环模型. 力学学报, 2016, 48(5): 1184-1191
    [38] (Liu Fushou, Jin Dongping.Equivalent circular ring model for the radial vibration analysis of hoop truss structures.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1184-1191 (in Chinese))
    [39] Modi VJ.Attitude dynamics of satellites with flexible appendagesa brief review.Journal of Spacecraft and Rockets, 1974, 11(11): 743-751
    [40] Likins P.Spacecraft attitude dynamics and control-a personal perspective on early developments.Journal of Guidance, Control, and Dynamics, 1986, 9(2): 129-134
    [41] 尹婷婷, 邓子辰, 胡伟鹏等. 空间刚性杆-弹簧组合结构轨道、姿态耦合动力学分析. 力学学报, 2018, 50(1): 87-98
    [41] (Yin Tingting, Deng Zichen, Hu Weipeng, et al.Dynamic modelling and simulation of orbit and attitude coupling problems for structure combined of spatial rigid rods and spring.Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 87-98 (in Chinese))
    [42] Cai GP, Hong JZ, Yang SX.Model study and active control of a rotating flexible cantilever beam.International Journal of Mechanical Sciences, 2004, 46(6): 871-889
    [43] Cai GP, LimCW. Active control of a flexible hub-beam system using optimal tracking control method.International Journal of Mechanical Sciences, 2006, 48(10): 1150-1162
    [44] Banerjee AK, Pedreiro N, Singhose WE.Vibration reduction for flexible spacecraft following momentum dumping with/without slewing.Journal of Guidance, Control, and Dynamics, 2001, 24(3): 417-427
    [45] Hu QL, Shi P, Gao H.Adaptive variable structure and commanding shaped vibration control of flexible spacecraft.Journal of Guidance, Control, and Dynamics, 2007, 30(3): 804-815
    [46] 胡军,张国琪,张志方等. 可抑制航天器轨控过程中太阳翼大幅振动的新型轨控方法研究. 载人航天, 2011 (2): 15-23
    [46] (Hu Jun, Zhang Guoqi, Zhang Zhifang, et al.New orbit control method to reduce solar panel vibration during orbit maneuvering.Manned Spaceflight, 2011(2): 15-23 (in Chinese))
    [47] Lun L, Cao DQ.Dynamic modeling for a flexible spacecraft with solar arrays composed of honeycomb panels and its proportional- derivative control with input shaper.Journal of Dynamic Systems, Measurement, and Control-Transactions of the ASME, 2016, 138: 081008
    [48] Singh SN, Zhang R.Adaptive output feedback control of spacecraft with flexible appendages by modeling error compensation.Acta Astronautica, 2004, 54(4): 229-243
    [49] Azadi M, Fazelzadeh S, Eghtesad M, et al.Vibration suppression and adaptive-robust control of a smart flexible satellite with three axes maneuvering.Acta Astronautica, 2011, 69(5): 307-322
    [50] 50 Hu QL. Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics.Nonlinear Dynamics, 2008, 52: 227-248
    [51] Hu Q, Cao J, Zhang Y.Robust backstepping sliding mode attitude tracking and vibration damping of flexible spacecraft with actuator dynamics.Journal of Aerospace Engineering, 2009, 22(2): 139-152
    [52] da Fonseca IM, Rade DM, Goes LCS. Attitude and vibration control of a satellite containing flexible solar arrays by using reaction wheels, and piezoelectric transducers as sensors and actuators.Acta Astronautica, 2017, 139: 357-366
    [53] 陶佳伟, 张涛. 控制受限的挠性航天器姿态机动控制和振动抑制. 电机与控制学报,2018, 22(3): 105-113
    [53] (Tao Jiawei, Zhang Tao.Robust adaptive attitude maneuvering and vibration reducing control of flexible spacecraft with input saturation.Electric Machines and Control, 2018, 22(3): 105-113 (in Chinese))
    [54] 袁国平,史小平,李隆. 航天器姿态机动的自适应鲁棒控制及主动振动抑制. 振动与冲击, 2013, 32(12): 110-115
    [54] (Yuan Guoping, Shi Xiaoping, Li Long.Adaptive robust attitude maneuver control of a flexible spacecraft with active vibration suppression.Journal of Vibration and Shock, 2013, 32(12): 110-115 (in Chinese))
    [55] Cao DQ, Song MT, Zhu WD, et al.Modeling and analysis of the inplane vibration of a complex cable-stayed bridge.Journal of Sound and Vibration, 2012, 331(26),5685-5714
    [56] Song MT, Cao DQ, Zhu WD.Dynamic analysis of a micro-resonator driven by electrostatic combs.Communications in Nonlinear Science and Numerical Simulation, 2011, 16(8): 3425-3442
    [57] Wei J, Cao D, Wang L, et al.Dynamic modeling and simulation of flexible spacecraft with flexible joints.International Journal of Mechanical Sciences, 2017,130: 558-570
    [58] Brǘls O, Duysinx P, Golinval JC.The global modal parameterization for non-linear model-order reduction in flexible multibody dynamics.International Journal for Numerical Methods in Engineering, 2007, 69(5): 948-977
    [59] Luo K, Hu H, Liu C, et al.Model order reduction for dynamic simulation of a flexible multibody system via absolute nodal coordinate formulation.Computer Methods in Applied Mechanics and Engineering, 2017, 324: 573-594.
  • 期刊类型引用(71)

    1. 刘付成,朱东方,李爽,李鸿光,郭延宁,齐乃明,王北超,冯昆鹏,孙俊. 超大尺度柔性航天器动力学建模与高精度形-姿协同控制研究进展. 中国科学:物理学 力学 天文学. 2025(02): 6-22 . 百度学术
    2. 莫庆鹏,管萍,曹彧腾. 大挠性航天器的积分滑模预测姿态控制. 北京信息科技大学学报(自然科学版). 2025(01): 80-87 . 百度学术
    3. 胡海岩,田强,文浩,罗凯,马小飞. 极大空间结构在轨组装的动力学与控制. 力学进展. 2025(01): 1-29 . 百度学术
    4. 程明,黄静,孙俊. 空间柔性结构振动控制智能作动技术研究进展. 宇航学报. 2025(01): 37-50 . 百度学术
    5. 邹元杰,邓润然,史纪鑫,葛东明. 柔性航天器动力学方程一般形式的工程简化方法. 中国空间科学技术(中英文). 2025(02): 70-78 . 百度学术
    6. 邓子辰,张凯,李庆军,安思奇,李纪辉. 超大型航天结构动力学与控制的保辛方法. 计算力学学报. 2024(01): 108-117 . 百度学术
    7. 黄利容,曾喆昭,曾鹏. 挠性航天器的自耦PD姿态控制方法. 空间控制技术与应用. 2024(01): 75-83 . 百度学术
    8. 方昱斌,朱晓锦,高志远,杨龙飞,张小兵. 鲁棒参数自适应微振动控制算法. 振动工程学报. 2024(02): 237-246 . 百度学术
    9. 安阳,王天舒. 弹性飞行器飞行动力学建模与刚柔耦合阶次分析. 宇航学报. 2024(02): 240-249 . 百度学术
    10. 王宁,郭建新. 基于碰撞概率的GEO业务卫星空间安全规避策略. 空间控制技术与应用. 2024(02): 12-22 . 百度学术
    11. 苏勇,何江,张淼,宫武旗. 基于双向流固耦合方法的火箭发动机输流管路振动研究. 振动工程学报. 2024(04): 717-728 . 百度学术
    12. 吴志刚,蒋建平,邬树楠,李庆军,王兴,谭述君,邓子辰. 航天结构空间组装动力学与控制研究进展. 力学进展. 2024(02): 344-390 . 百度学术
    13. 包燕伟,管萍,戈新生,曹彧腾. 基于扰动观测器的大挠性航天器姿态预见控制. 北京信息科技大学学报(自然科学版). 2024(03): 8-15 . 百度学术
    14. 方昱斌,朱晓锦,高志远,张小兵. 多输入多输出微振动系统的混合鲁棒自适应控制. 控制理论与应用. 2024(09): 1559-1568 . 百度学术
    15. 程明,孙禄君,黄静,朱东方,孙俊. 二维力矩输出的振动抑制执行机构设计与试验. 宇航学报. 2024(11): 1742-1751 . 百度学术
    16. 梁月慧,祁文军. 孔洞式缺陷对γ-TiAl合金断裂行为的影响. 金属热处理. 2023(02): 295-302 . 百度学术
    17. 徐状,李生权,李娟,王书旺,张路瑶,陈东雷. 基于扩张状态观测器的压电结构复合滑模振动控制. 噪声与振动控制. 2023(02): 15-20+34 . 百度学术
    18. 张硕,杨洋,李媛媛,葛玉梅,杨翊仁. 多体柔性机械臂的非线性能量阱被动控制研究. 四川轻化工大学学报(自然科学版). 2023(01): 33-40 . 百度学术
    19. 马佳,揭豪,白梦昊,彭静,陈辉,陈得良. 基于无量纲分析的法向恢复系数模型研究. 力学学报. 2023(04): 982-990 . 本站查看
    20. 刘蔚,王富涵. 一种带曲线折痕的圆柱形折纸蒙皮的构成分析. 空间结构. 2023(02): 63-69 . 百度学术
    21. 管萍,黄明亮,戈新生,曹彧腾. 大挠性航天器的模糊模型预测控制. 航天控制. 2023(03): 43-49 . 百度学术
    22. 邬树楠,周威亚,叶哲,李庆军,邓子辰. 大型航天结构在轨组装阶段作动器布局优化. 空间控制技术与应用. 2023(03): 1-9 . 百度学术
    23. 邹纫秋,张加友,宋祥帅,谢亚恩,吴限德. 天基遥感中航天器挠性对成像区域的影响. 智能系统学报. 2023(03): 489-495 . 百度学术
    24. 林晓冬,张锐,刘芳,兰青. 基于变分模态分解的复杂航天器姿态扰动分析. 振动与冲击. 2023(13): 303-309 . 百度学术
    25. 杨胜丽,吴志刚,孟得山,李庆军,邵可. 机器人在轨组装结构的耦合动力学与步态优化. 力学学报. 2023(07): 1548-1558 . 本站查看
    26. 姜斌,孟庆开,杨浩. 航天器姿轨控制研究综述:微分几何控制方法. 控制与决策. 2023(08): 2079-2092 . 百度学术
    27. 方昱斌,朱晓锦,杨龙飞,许志超,田梦楚,张小兵. 多频未知时变扰动下的结构微振动鲁棒自适应控制. 振动工程学报. 2023(05): 1309-1317 . 百度学术
    28. 黄明亮,管萍,戈新生,曹彧腾. 大挠性航天器的自触发模型预测控制. 飞行力学. 2023(06): 59-67 . 百度学术
    29. 龚浩然,曹善成,王博,吴志刚. 热辐射及重力梯度对大型空间柔性梁结构振动影响分析. 动力学与控制学报. 2023(11): 1-9 . 百度学术
    30. 于香杰,游斌弟,魏承,赵阳,夏斌,刘朝旭. 中性线修正型变截面梁类构件压电控制. 力学学报. 2022(01): 209-219 . 本站查看
    31. 王祥,王晓宇,柴洪友. 面向结构动静态变形控制的作动器综合优化配置研究. 航天器工程. 2022(01): 64-72 . 百度学术
    32. 吴瑞琴,祝巍,张伟,陈建恩,胡文华. 网架式天线环状支撑桁架结构连续体降阶模型研究. 振动工程学报. 2022(02): 487-494 . 百度学术
    33. 管萍,吴希岩,戈新生,曹彧腾. 大型挠性航天器的鲁棒模型预测姿态控制. 宇航学报. 2022(04): 476-485 . 百度学术
    34. 陈耀,叶王杰,史佳遥,冯健. 三浦折纸超材料结构数字化设计与模型验证. 力学学报. 2022(07): 2019-2029 . 本站查看
    35. 管萍,吴希岩,戈新生. 基于Tube的挠性航天器模型预测姿态控制及主动振动控制. 振动与冲击. 2022(16): 261-270 . 百度学术
    36. 张赛 ,杨震 ,罗亚中 . 地固系下航天器单脉冲轨道机动可达域求解算法. 力学与实践. 2022(06): 1286-1296 . 百度学术
    37. 王庚祥,马道林,刘洋,刘才山. 多体系统碰撞动力学中接触力模型的研究进展. 力学学报. 2022(12): 3239-3266 . 本站查看
    38. 梁月慧,祁文军. Al含量对γ-TiAl合金断裂行为的影响. 钢铁钒钛. 2022(05): 99-105 . 百度学术
    39. 冯焕,庞爱平,周鸿博,周俊杰,朱辉,孟范伟. 大型柔性航天器的高精度结构化综合控制. 科学技术与工程. 2022(29): 12909-12916 . 百度学术
    40. 孔嘉祥,王博洋,刘铸永,郭其威,时军委,臧旭. 带Stewart平台的航天器刚柔耦合动力学建模与仿真分析. 动力学与控制学报. 2022(06): 76-84 . 百度学术
    41. 薛纭,陈立群. Kirchhoff动力学比拟对弹性薄壳的推广. 力学学报. 2021(01): 234-247 . 本站查看
    42. 黄志来,李新圆,金栋平. 单框架控制力矩陀螺输出特性分析. 力学学报. 2021(02): 511-523 . 本站查看
    43. 张欣刚,齐朝晖,王刚,国树东,吴志刚. 基于线性互补问题的多体系统接触/碰撞动力学研究. 振动与冲击. 2021(05): 276-282 . 百度学术
    44. 祝世兴,杨丽昆,魏戬,祝恒佳. 基于改进Bingham模型的磁流变阻尼器力学建模及试验研究. 重庆理工大学学报(自然科学). 2021(04): 254-264 . 百度学术
    45. 李志华,李广,沈汉武,樊志华. 基于QSS的自适应多步校正算法及其在柔性航天器动力学中的应用. 航空学报. 2021(06): 413-421 . 百度学术
    46. 何贵勤,曹登庆,陈帅,黄文虎. 挠性航天器太阳翼全局模态动力学建模与实验研究. 力学学报. 2021(08): 2312-2322 . 本站查看
    47. 李林峻,党旭丹,刘洋. 柔性多关节移动机器人末端残余振动控制研究. 机械设计与制造. 2021(09): 102-106 . 百度学术
    48. 刘付成,朱东方. 考虑连接非线性的大型桁架天线分散协调控制. 航空学报. 2021(11): 139-149 . 百度学术
    49. 罗操群,孙加亮,文浩,胡海岩,金栋平. 多刚体系统分离策略及释放动力学研究. 力学学报. 2020(02): 503-513 . 本站查看
    50. 曹登庆,刘梅,朱东方,李友遐. 空间可展桁架结构等效动力学模型研究进展与展望. 飞控与探测. 2020(01): 8-17+4 . 百度学术
    51. 王恩美,邬树楠,吴志刚. 在轨组装空间结构面向主动控制的动力学建模. 力学学报. 2020(03): 805-816 . 本站查看
    52. 宋新宇,戈新生. 挠性航天器动力学模型的非约束模态分析. 力学学报. 2020(04): 954-964 . 本站查看
    53. 李海波,刘世兴,宋海燕,梁立孚. 非保守非线性刚-弹-液-控耦合分析动力学及其应用研究. 力学学报. 2020(04): 932-944 . 本站查看
    54. 沈羽. 基于逆向工程的挠性机械臂三维动力建模研究. 工程与试验. 2020(02): 44-45 . 百度学术
    55. 李海泉,梁建勋,吴爽,刘茜,张文明. 空间机械臂柔性捕获机构建模与实验研究. 力学学报. 2020(05): 1465-1474 . 本站查看
    56. 朱超威,李生权,李娟,曹晴峰. 基于非线性扩张状态观测器的四面固支板自抗扰振动主动控制. 扬州大学学报(自然科学版). 2020(01): 21-25 . 百度学术
    57. 胡远东,陆正亮,廖文和. 低轨纳卫星质量矩姿态控制技术研究. 力学学报. 2020(06): 1599-1609 . 本站查看
    58. 宋慧心,金磊. 折叠翼飞行器的动力学建模与稳定控制. 力学学报. 2020(06): 1548-1559 . 本站查看
    59. 沈涛,张崇峰,王卫军,冯文博,邱华勇. 基于抱爪式对接机构捕获缓冲系统动力学仿真研究. 力学学报. 2020(06): 1590-1598 . 本站查看
    60. 孙杰,孙俊,刘付成,朱东方,黄静. 含间隙铰接的柔性航天器刚柔耦合动力学与控制研究. 力学学报. 2020(06): 1569-1580 . 本站查看
    61. 杜向南,杨震. 航天器单脉冲机动可达域求解算法. 力学学报. 2020(06): 1621-1631 . 本站查看
    62. 司震,钱霙婧,杨晓东,张伟. 基于参激共振的受摄小行星悬停轨道设计方法. 力学学报. 2020(06): 1774-1788 . 本站查看
    63. 李皓皓,张进,罗亚中. 基于机动目标滤波估计的航天器主动规避策略. 力学学报. 2020(06): 1560-1568 . 本站查看
    64. 魏进,曹登庆,于涛. 复合柔性结构全局模态函数提取与状态空间模型构建. 力学学报. 2019(02): 341-353 . 本站查看
    65. 牛牧青,杨斌堂,杨诣坤,孟光,陈立群. 磁致伸缩主被动隔振装置中的磁机耦合效应研究. 力学学报. 2019(02): 324-332 . 本站查看
    66. 刘兴天,陈树海,王嘉登,申军烽. 几何非线性摩擦阻尼隔振系统动力学行为研究. 力学学报. 2019(02): 371-379 . 本站查看
    67. 潘忠文,邢建伟,王檑,陈艳. 并联式承载减振一体的整星隔振研究. 力学学报. 2019(02): 364-370 . 本站查看
    68. 邢昭阳,申永军,邢海军,杨绍普. 一种含放大机构的负刚度动力吸振器的参数优化. 力学学报. 2019(03): 894-903 . 本站查看
    69. 邱海,方虹斌,徐鉴. 多稳态串联折纸结构的非线性动力学特性. 力学学报. 2019(04): 1110-1121 . 本站查看
    70. 范纪华,章定国,谌宏. 基于绝对节点坐标法的弹性线方法研究. 力学学报. 2019(05): 1455-1465 . 本站查看
    71. 李晓玉,岳宝增. 基于多尺度方法的平动圆柱贮箱航天器刚–液耦合动力学研究. 力学学报. 2019(05): 1448-1454 . 本站查看

    其他类型引用(69)

计量
  • 文章访问数:  5007
  • HTML全文浏览量:  918
  • PDF下载量:  1767
  • 被引次数: 140
出版历程
  • 刊出日期:  2019-01-17

目录

    /

    返回文章
    返回