EI、Scopus 收录
中文核心期刊

多孔介质内黏弹性流体的热对流稳定性研究

康建宏, 谭文长

康建宏, 谭文长. 多孔介质内黏弹性流体的热对流稳定性研究[J]. 力学学报, 2018, 50(6): 1436-1457. DOI: 10.6052/0459-1879-18-309
引用本文: 康建宏, 谭文长. 多孔介质内黏弹性流体的热对流稳定性研究[J]. 力学学报, 2018, 50(6): 1436-1457. DOI: 10.6052/0459-1879-18-309
Kang Jianhong, Tan Wenchang. THERMAL INSTABILITY OF VISCOELASTIC FLUIDS IN POROUS MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1436-1457. DOI: 10.6052/0459-1879-18-309
Citation: Kang Jianhong, Tan Wenchang. THERMAL INSTABILITY OF VISCOELASTIC FLUIDS IN POROUS MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1436-1457. DOI: 10.6052/0459-1879-18-309
康建宏, 谭文长. 多孔介质内黏弹性流体的热对流稳定性研究[J]. 力学学报, 2018, 50(6): 1436-1457. CSTR: 32045.14.0459-1879-18-309
引用本文: 康建宏, 谭文长. 多孔介质内黏弹性流体的热对流稳定性研究[J]. 力学学报, 2018, 50(6): 1436-1457. CSTR: 32045.14.0459-1879-18-309
Kang Jianhong, Tan Wenchang. THERMAL INSTABILITY OF VISCOELASTIC FLUIDS IN POROUS MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1436-1457. CSTR: 32045.14.0459-1879-18-309
Citation: Kang Jianhong, Tan Wenchang. THERMAL INSTABILITY OF VISCOELASTIC FLUIDS IN POROUS MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1436-1457. CSTR: 32045.14.0459-1879-18-309

多孔介质内黏弹性流体的热对流稳定性研究

基金项目: 1) 国家重点研发计划项目(2018YFC0808100) 和国家自然科学基金重点项目(11732001) 资助.
详细信息
    作者简介:

    null

    2) 康建宏,副教授,主要从事瓦斯资源开发与利用、非牛顿流体力学等研究. E-mail: jhkang@cumt.edu.cn;
    3) 谭文长,教授,主要从事生物力学、非牛顿流体力学等研究. E-mail: tanwch@pku.edu.cn

  • 中图分类号: O357.3;

THERMAL INSTABILITY OF VISCOELASTIC FLUIDS IN POROUS MEDIA

  • 摘要: 基于修正的Darcy模型, 介绍了多孔介质内黏弹性流体热对流稳定性研究的现状和主要进展. 通过线性稳定性理论, 分析计算多孔介质几何形状(水平多孔介质层、多孔圆柱以及多孔方腔)、热边界条件(底部等温加热、底部等热流加热、底部对流换热以及顶部自由开口边界)、黏弹性流体的流动模型(Darcy-Jeffrey, Darcy-Brinkman-Oldroyd以及Darcy-Brinkman -Maxwell模型)、局部热非平衡效应以及旋转效应对黏弹性流体热对流失稳的临界Rayleigh数的影响. 利用弱非线性分析方法, 揭示失稳临界点附近热对流流动的分叉情况, 以及失稳临界点附近黏弹性流体换热Nusselt数的解析表达式. 采用数值模拟方法, 研究高Rayleigh数下黏弹性流体换热Nusselt数和流场的演化规律,分析各参数对黏弹性流体热对流失稳和对流换热速率的影响.主要结果:(1)流体的黏弹性能够促进振荡对流的发生;(2)旋转效应、流体与多孔介质间的传热能够抑制黏弹性流体的热对流失稳;(3)在临界Rayleigh数附近,静态对流分叉解是超临界稳定的, 而振荡对流分叉可能是超临界或者亚临界的,主要取决于流体的黏弹性参数、Prandtl数以及Darcy数;(4)随着Rayleigh数的增加,热对流的流场从单个涡胞逐渐演化为多个不规则单元涡胞, 最后发展为混沌状态.
    Abstract: Based on the modified Darcy model, the status and progress in research of thermal instability of viscoelastic fluids in porous media are reviewed. By using the method of linear stability analysis, the effects of the geometry of porous media (i.e. horizontal porous layer, porous cylinder and porous cavity), thermal boundary conditions (i.e. bottom heated with constant temperature, bottom heated with constant heat flux, bottom with Newtonian heating and open top), flow model of viscoelastic fluids (i.e. modified Darcy-Jeffrey, Darcy-Brinkman-Oldroyd and Darcy-Brinkman- Maxwell models), local thermal non-equilibrium and rotation on the critical Rayleigh number of thermal instability of viscoelastic fluids can be calculated. By using the method of weakly non-linear analysis, the bifurcation from the basic state and the analytical solution of Nusselt number at the neighborhood of critical point can be obtained. By the numerical simulation method, the evolution of flow pattern as well as the variations of Nusselt number at high Rayleigh number can be revealed. It has been found that (1) the elasticity of viscoelastic fluids can destabilize the oscillatory convection; (2) the rotation effect and local thermal non-equilibrium effect can suppress the thermal instability of viscoelastic fluids; (3) at the neighborhood of critical point, the bifurcation from the basic state for stationary convection is supercritical, while the bifurcation for the oscillatory can be supercritical or subcritical, mainly depending on the values of viscoelastic parameters, Prandtl number and Darcy number; (4) with the increasing Rayleigh number, the flow pattern of thermal convection evolve from one-cell pattern into multi-cell roll pattern, and finally a chaotic pattern.
  • [1] Benard H.Les tourbillons cellulaires dans une nappe liquide. Revue générale des Sciences pures et appliqués, 1900 (11): 1261
    [2] Rayleigh L.On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philosophical Magazine, 1916, 32: 529-546
    [3] Reid WH, Harris DL.Some further result on the B'enard problem. Physics of Fluids, 1958, 1: 102-110
    [4] Chandrasekhar S.Hydrodynamic and Hydromagnetic Stability. Oxford: Oxford University Press, 1961
    [5] Huppert HE, Turner JS.Double-diffusive convection. Journal of Fluid Mechanics, 1981, 106: 299-329
    [6] Sezai I, Mohamad AA.Double diffusive convection in a cubic enclosure with opposing temperature and concentration gradients. Physics of Fluids, 2000, 12(9): 2210-2223
    [7] Kuznetsov AV, Nield DA.The onset of double-diusive nanofluid convection in a layer of a saturated porous medium. Transport in Porous Media, 2000, 85(3): 941-951
    [8] Jones CA, Soward AM, Mussa AI.The onset of thermal convection in a rapidly rotating sphere. Journal of Fluid Mechanics, 2000, 405: 157-179
    [9] Straughan B.A sharp nonlinear stability threshold in rotating porous convection. Proceedings of the Royal Society Lond A, 2001, 457(2005): 87-93
    [10] Malashetty MS, Swamy M, Kulkarni S.Thermal convection in a rotating porous layer using a thermal nonequilibrium model. Physics of Fluids, 2007, 19(5): 054102
    [11] Friedrich J, Lee YS, Fischer B, et al.Experimental and numerical study of Rayleigh-Benard convection affected by a rotating magnetic field. Physics of Fluids, 1999, 11(4) : 853-861
    [12] Dawes JHP.Localized convection cells in the presence of a vertical magnetic field. Journal of Fluid Mechanics, 2007, 570: 385-406
    [13] Wang CY.Onset of convection in a fluid-saturated rectangular box. bottom heated by constant flux. Physics of Fluids, 1999, 11(6): 1673-1675
    [14] Bringedal C, Berre I, Nordbotten JM, et al.Linear and nonlinear convection in porous media between coaxial cylinders. Physics of Fluids, 2011, 23(5): 094109
    [15] Horton CW, Rogers FT.Convection currents in a porous medium. Journal of Appllied Physics, 1945, 16(6): 367-370
    [16] Lapwood ER.Convection of a fluid in a porous medium. Proceedings of the Cambridge Philosophical Society, 1948, 44(4): 508-521
    [17] Katto Y, Masuoka T.Criterion for onset of convection in a saturated porous medium. Int. J. Heat Mass Transfer, 1967, 10: 297-309
    [18] Beck JL.Convection in a box of porous materialsaturated with fluid. Physics of Fluids, 1972, 15: 1377-1383
    [19] Wang CY.Onset of natural convection in a fluid-saturated porous medium inside a cylindrical enclosure bottom heated by constant flux. International Communication of Heat and Mass Transfer, 1998, 25(4): 593-598
    [20] Wang CY.Convective stability a rectangular box of fluid-saturated porous medium with constant pressure top and constant flux bottom heating. Transport in Porous Media, 2002, 46: 37-42
    [21] Zebib A.Onset of natural convection in a cylinder of water saturated porous media. Physics of Fluids, 1978, 21(4): 699-700
    [22] Haugen KB, Tyvand PA.Onset of thermal convection in a vertical porous cylinder with conducting wall. Physics of Fluids, 2003, 15(9): 2661-2667
    [23] Bau HH, Torrance KE.Onset of convection in a permeable medium between vertical coaxial cylinders. Physics of Fluids, 1981, 24(3): 382-385
    [24] Otero PDJ, Dontcheva LA, Johnston H, et al.High-Rayleigh-number convection in a fluid-saturated porous layer. Journal of Fluid Mechanics, 2004, 500(500): 263-281
    [25] Cherkaoui ASM, Wilcock WSD.Characteristics of high Rayleigh number two-dimensional convection in an open-top porous layer heated from below. Journal of Fluid Mechanics, 1999, 394(394): 241-260
    [26] 申德勇. 热-化学复合驱提高稠油采收率机理的实验研究. [硕士论文]. 青岛:中国石油大学(华东), 2011
    [26] (Shen Deyong.Experimental research on mechanism of thermal-chemical flooding for enhancing heavy oil recovery. Qingdao: China University of Petroleum, 2011(in Chinese))
    [27] 余荔, 宁利中, 魏炳乾等. Rayleigh- Benard 对流及其在工程中的应用. 水资源与水工程学报, 2008, 19(3): 52-54
    [27] (Yu Li, Ning Lizhong, Wei Bingqian, et al.Rayleigh-Benard convection and application in engineering. Journal of Water Resources & Water Engineering, 2008, 19(3): 52-54 (in Chinese))
    [28] Rudraiah N, Kaloni PN, Radhadevi PV.Oscillatory convection in a viscoelastic fluid through a porous layer heated from below. Rheology Acta, 1989, 28(1): 48-53
    [29] Bertola V, Cafaro E.Thermal instability of viscoelastic fluids in horizontal porous layers as initial value problem. International Journal of Heat and Mass Transfer, 2006, 49(21): 4003-4012
    [30] Kim MC, Lee SB, Chung BJ.Thermal instability of viscoelastic fluids in porous media. International Journal of Heat and Mass Transfer, 2003, 46(26): 5065-5072
    [31] Tan WC, Masuoka T.Stability analysis of a Maxwell fluid in a porous medium heated from below. Physics Letters A, 2007, 360(3): 454-460
    [32] Fu CJ, Zhang ZY, Tan WC.Numerical simulation of thermal convection of a viscoelastic fluid in a porous square box heated from below. Physics of Fluids, 2007, 19(10): 104107
    [33] Niu J, Fu CJ, Tan WC.Thermal convection of a viscoelastic fluid in an open-top porous layer heated from below. Journal of Non-Newtonian Fluid Mechanics, 2010, 165: 203-211
    [34] Niu J, Fu CJ, Tan WC.Stability of thermal convection of an Oldroyd-B fluid in a porous medium with Newtonian heating. Physics Letters A, 2010, 374(45): 4607-4613
    [35] Niu J, Shi ZH, Tan WC.The viscoelastic effects on thermal convection of an Oldroyd-B fluid in open-top porous media. Journal of Hydrodynamics, 2013, 25(4): 639-642
    [36] Niu J, Shi ZH, Tan WC.Numerical simulation of thermal convection of viscoelastic fluids in an open-top porous medium with constant heat flux. Journal of Hydrodynamics, 2015, 27(1): 52-61
    [37] Niu J, Shi ZH, Tan WC.Thermal instability and heat transfer of viscoelastic fluids in bounded porous media with constant heat flux boundary. Journal of Hydrodynamics, 2015, 27(5): 809-812
    [38] Zhang ZY, Fu CJ, Tan WC.Onset of oscillatory convection in a porous cylinder saturated with a viscoelastic fluid. Physics of Fluids, 2007, 19(9): 098104
    [39] Zhang ZY, Fu CJ, Tan WC.Linear and nonlinear stability analyses of thermal convection for Oldroyd-B fluids in porous media heated from below. Physics of Fluids, 2008, 20(8): 084103
    [40] Wang SW, Tan WC.Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below. Physics Letters A, 2008, 372: 3046-3050
    [41] Wang SW, Tan WC.Stability analysis of soret-driven double-diffusive convection of Maxwell fluid in a porous medium. International Journal of Heat and Fluid Flow, 2011, 32(1): 88-94
    [42] Kang JH, Fu CJ, Tan WC.Thermal convective instability of viscoelastic fluids in a rotating porous layer heated from below. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(1-2): 93-101
    [43] Kang JH, Niu J, Fu CJ, et al.Coriolis effect on thermal convective instability of viscoelastic fluids in a rotating porous cylindrical annulus. Transport in Porous Media, 2013, 98(2): 349-362
    [44] Yin C, Fu CJ, Tan WC.Onset of thermal convection in a Maxwell fluid-saturated porous medium: the effects of hydrodynamic boundary and constant flux heating conditions. Transport in Porous Media, 2012, 91(3): 777-790
    [45] Yin C, Fu CJ, Tan WC.Stability of thermal convection in a fluid-porous system saturated with an Oldroyd-B fluid heated from below. Transport in Porous Media, 2013, 99(2): 327-347
    [46] Yin C, Niu J, Fu CJ, et al.Thermal convection of a viscoelastic fluid in a fluid-porous system subjected to a horizontal plane Couette flow. International Journal of Heat and Fluid Flow, 2013, 44(4): 711-718
    [47] Malashetty MS, Shivakumara IS, Kulkarni S, et al.Convective instability of Oldroyd-B fluid saturated porous layer heated from below using a thermal non-equilibrium model. Transport in Porous Media, 2006, 64(1): 123-139
    [48] Malashetty MS, Swamy M, Heera R.The onset of convection in a binary viscoelastic fluid saturated porous layer. Journal of Applied Mathematics and Mechanics, 2009, 89(5): 356-369
    [49] Malashetty MS, Tan WC, Swamy M.The onset of double diffusive convection in a binary viscoelastic fluid saturated anisotropic porous layer. Physics of Fluids, 2009, 21(8): 084101
    [50] 康建宏. 旋转效应对多孔介质内热对流稳定性与换热的影响. [博士论文]. 北京: 北京大学, 2013
    [50] (Kang Jianhong.Rotating effects on thermal convective stability and heat transfer in porous media. [PhD Thesis]. Beijing: Peking University, 2013 (in Chinese))
    [51] 尹晨. 黏弹性流体在多孔介质以及流体-多孔介质双层系统内的热对流稳定性分析. [博士论文]. 北京: 北京大学, 2012
    [51] (Yin Chen.Stability analysis of thermal convection of viscoelastic fluids in porous media and fluid-porous systems. [PhD Thesis]. Beijing: Peking University, 2013 (in Chinese))
    [52] Khuzhayorov B, Auriault JL, Royer P.Derivation of macroscopic filtration law for transient linear viscoelastic fluid flow in porous media. International Journal of Engineering Science, 2000, 38(5): 487-504
    [53] Alishayev MG, Kh A.Mirzadzhanzadeh. About retardation phenomena in filtration theory. Izvestiia VUZov Neft i Gaz, 1975, 6: 71-74
    [54] Yoon DY, Kim MC, Choi CK.The onset of oscillatory convection in a horizontal porous layer saturated with viscoelastic liquid. Transport in Porous Media, 2004, 55(3): 275
    [55] Akhatov IS, Chembarisova RG.The thermoconvective instability in hydrodynamics of relaxational liquids//Instabilities and Multiphase Flows, New York: Plenum Press, 1993: 277-287
    [56] Shivakumara IS, Sureshkumar S.Convective instabilities in a viscoelastic fluid-saturated porous medium with through flow. Journal of Geophysics Engeering, 2007, 4: 104-115
    [57] Nield DA, Bejan A.Convection in Porous Media. 2nd edn. Springer, 1999
    [58] Rudraiah N, Radhadevi PV.Convection in a viscoelastic fluid-saturated sparsely packed porous layer. Candian Journal of Physics, 1990, 68: 1446-1453
    [59] Vafai K, Tien CL.Boundary and inertia effects on flow and heat transfer in porous media. International Journal of Heat and Mass Transfer, 1981, 24(1): 195-202
    [60] Tan WC, Masuoka T.Stokes' first problem for an Oldroyd-B fluid in a porous half-space. Physics of Fluids, 2005, 17(2): 023101
    [61] Sokolov M, Tanner RI.Convective stability of a general viscoelastic fluid heated from below. Physics of Fluids, 1972, 15(4): 534
    [62] Kolkka RW, Ierley GR.On the convected linear stability of a viscoelastic Oldroyd-B fluid heated from below. Journal of Non-Newtonian Fluid Mechanics, 1987, 25(2): 209-237
    [63] Gupta VP, Joseph DD.Bounds for heat transport in porous media. Journal of Fluid Mechanics, 1973, 57: 491-514
    [64] Rosenbalt S.Thermal convection in a viscoelatic liquid. Journal of Non- Newtonian Fluid Mechanics, 1986, 21(2): 201-203
    [65] Vadasz P.The instability of a layer of fluid heated below and subject to Coriolis forces. Journal of Fluid Mechanics, 1998, 376: 351-373
    [66] Drazin PG, Reid WH. Hydrodynamic Stability.New York: Cambridge University Press, 1981
    [67] Li Z, Khayat RE.Finite-amplitude Rayleigh-Benard convection and pattern selection for viscoelastic fluids. Journal of Fluid Mechanics, 2005, 529: 221-251
    [68] 季爱林, 钟剑锋, 帅立国. 大热流密度电子设备的散热方法. 电子机械工程, 2013, 29(6): 30-35
    [68] (Ji Ailin, Zhong Jianfeng, Shuai Liguo.Cooling measures of high flux electronic equipment. Electro-Mechanical Engineering, 2013, 29(6): 30-35 (in Chinese))
    [69] Sparrow EM, Goldstein RJ, Jonsson VK.Thermal instability in a horizontal fluid layer: Effect of boundary conditions and non-linear temperature profile. Journal of Fluid Mechanics, 1964, 18: 513-528
    [70] Caltagirone JP.Thermoconvective instabilities in a horizontal porous layer. Journal of Fluid Mechanics, 1975, 27: 269-287
    [71] Kubitschek JP, Weidman PD.Stability of a fluid-saturated porous medium heated from by forced convection. International Journal of Heat and Mass Transfer, 2003, 46(9): 3697-3705
    [72] Banu N, Rees DAS.Onset of Darcy-Benard convection using a thermal nonequilibrium model. International Journal of Heat and Mass Transfer, 2002, 45: 2221-2228
    [73] Vadasz P.Stability of free convection in a rotating porous layer distant from the axis ofrotation. Transport in Porous Media, 1996, 23(2): 153-173
    [74] Malashetty MS, Swamy M.SidramW. Thermal convection in a rotating viscoelastic fluid saturated porous layer. International Journal of Heat and Mass Transfer, 2010, 53: 5747-5756
  • 期刊类型引用(6)

    1. 魏永民,王娟. 天津沧县隆起蓟县系雾迷山组热储尾水回灌地温场变化特征分析. 桂林理工大学学报. 2024(04): 598-604 . 百度学术
    2. 栾致漫. 双层系统内Jeffreys流体的Rayleigh-Marangoni对流不稳定性分析. 吉林大学学报(理学版). 2022(06): 1430-1438 . 百度学术
    3. 李楠,王晓杰,杜咏昊. 最优炉温曲线与确定其工艺参数问题. 电子测试. 2021(01): 48-50 . 百度学术
    4. 李治,陈文炯,张天恩. 翅片打孔对板翅式换热器传热性能和流场影响. 大连理工大学学报. 2021(01): 60-66 . 百度学术
    5. 郭颖,李文杰,马建军,梁斌,熊春宝. 饱和多孔黏弹地基热-水-力耦合动力响应分析. 力学学报. 2021(04): 1081-1092 . 本站查看
    6. 王立安,赵建昌,杨华中. 饱和多孔地基与矩形板动力相互作用的非轴对称混合边值问题. 力学学报. 2020(04): 1189-1198 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  1792
  • HTML全文浏览量:  342
  • PDF下载量:  338
  • 被引次数: 12
出版历程
  • 收稿日期:  2018-09-16
  • 刊出日期:  2018-11-17

目录

    /

    返回文章
    返回