EI、Scopus 收录
中文核心期刊

求解I型裂纹构元J积分的半解析方法

贺屹, 蔡力勋, 陈辉, 彭云强

贺屹, 蔡力勋, 陈辉, 彭云强. 求解I型裂纹构元J积分的半解析方法[J]. 力学学报, 2018, 50(3): 579-588. DOI: 10.6052/0459-1879-18-026
引用本文: 贺屹, 蔡力勋, 陈辉, 彭云强. 求解I型裂纹构元J积分的半解析方法[J]. 力学学报, 2018, 50(3): 579-588. DOI: 10.6052/0459-1879-18-026
He Yi, Cai Lixun, Chen Hui, Peng Yunqiang. A SEMI ANALYTICAL METHOD TO SOLVE J-INTEGRAL FOR MODE-I CRACK COMPONENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 579-588. DOI: 10.6052/0459-1879-18-026
Citation: He Yi, Cai Lixun, Chen Hui, Peng Yunqiang. A SEMI ANALYTICAL METHOD TO SOLVE J-INTEGRAL FOR MODE-I CRACK COMPONENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 579-588. DOI: 10.6052/0459-1879-18-026
贺屹, 蔡力勋, 陈辉, 彭云强. 求解I型裂纹构元J积分的半解析方法[J]. 力学学报, 2018, 50(3): 579-588. CSTR: 32045.14.0459-1879-18-026
引用本文: 贺屹, 蔡力勋, 陈辉, 彭云强. 求解I型裂纹构元J积分的半解析方法[J]. 力学学报, 2018, 50(3): 579-588. CSTR: 32045.14.0459-1879-18-026
He Yi, Cai Lixun, Chen Hui, Peng Yunqiang. A SEMI ANALYTICAL METHOD TO SOLVE J-INTEGRAL FOR MODE-I CRACK COMPONENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 579-588. CSTR: 32045.14.0459-1879-18-026
Citation: He Yi, Cai Lixun, Chen Hui, Peng Yunqiang. A SEMI ANALYTICAL METHOD TO SOLVE J-INTEGRAL FOR MODE-I CRACK COMPONENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 579-588. CSTR: 32045.14.0459-1879-18-026

求解I型裂纹构元J积分的半解析方法

基金项目: 国家自然科学基金资助项目(11472228).
详细信息
    作者简介:

    通讯作者:蔡力勋,教授,博士生导师,主要研究方向:断裂与疲劳、强度理论、材料测试理论与技术. E-mail:lix_cai@263.net;陈辉,博士研究生,主要研究方向:材料测试理论与技术. E-mail:chen_hui5352@163.com

    通讯作者:

    蔡力勋

    蔡力勋,陈辉

  • 中图分类号: O346.1;

A SEMI ANALYTICAL METHOD TO SOLVE J-INTEGRAL FOR MODE-I CRACK COMPONENTS

  • 摘要: 表征裂纹尖端应力应变场程度的J积分是一个定义明确、理论严密的弹塑性断裂力学基础参量. 目前J积分的计算主要是依靠塑性因子法和有限元法,但对各类裂纹构元获得J积分以及载荷-位移关系的解析公式以实现材料断裂韧性理论预测和材料测试是断裂力学的重要和困难的任务. 以J积分为参量的材料断裂测试中应用最广的是I型裂纹试样的断裂韧性测试. 本文在平面应变条件下,针对断裂韧性测试中使用的6种I型裂纹构元,基于能量等效假设,提出了J积分-载荷和载荷-位移的工程半解析统一表征方法,进而结合有限元分析的少量计算获得J积分-载荷和载荷-位移关系的半解析公式待定参数. 分析表明,6种I型裂纹构元的J积分-载荷和载荷-位移统一公式的预测结果与有限元结果吻合良好. 新提出的J积分-载荷工程半解析公式包含了材料的弹性模量、应力强度系数和应变硬化指数,能够广泛适应不同的材料,且运用该公式能够方便获取任意载荷点对应的J积分值. 应用新方法可便于获得各类I型裂纹构元的J积分-载荷和载荷-位移工程半解析公式.
    Abstract: The J-integral to characterize the singular level of the stress and strain field at the crack tip is definite and rigorous and is a basic parameter of elastoplastic fracture mechanics. The calculation of J-integral mainly depends on the plastic factor method and the finite element method at present. For theoretical predicting and testing of material fracture toughness, it is important and difficult to obtain analytical expressions about J-integral-load and load-displacement relations of cracked components. The most widely used test for structure integrity evaluation with J-integral is the ductile fracture toughness of type-I cracked specimens. Here, based on the Chen-Cai energy equivalence hypothesis, a unified characterization method of J-integral-load and load-displacement relation is proposed for six Mode-I cracked components which are commonly used in fracture toughness test under the plane strain condition. Then, the undetermined parameters of the engineering semi-analytical formulas of the J-integral-load and the load-displacement relations are obtained by a small amount of finite element analysis. The results show that the J-integral-load and load-displacement relation predicted by the unified semi-analytical formulas are in good agreement with those from finite element method. The engineering semi-analytical J-integral-load formula, which contains the elastic modulus, stress strength coefficient and strain hardening exponent of materials, can be widely adapted for different materials. And the J-integral value corresponding to arbitrary load points can be easily obtained by the formula. The presented novel method is convenient to establish the engineering semi-analytical formulas of J-integral-load and load-displacement relations for various type-I cracked components or specimens.
  • [1] 胡海岩, 赵永辉, 黄锐. 飞机结构气动弹性分析与控制研究. 力学学报, 2016, 48(1): 1-27
    [1] (Hu Haiyan, Zhao Yonghui, Huang Rui.Studies on aeroelastic analysis and control of aircraft structures.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 1-27 (in Chinese))
    [2] 柳占立, 庄茁, 孟庆国等. 页岩气高效开采的力学问题与挑战. 力学学报, 2017, 49(3): 507-516
    [2] (Liu Zhanli, Zhuang Zhuo, Meng Qingguo, et al.Problems and challenges of mechanics in shale gas efficient exploitation.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507-516 (in Chinese))
    [3] Kumar V, German MD, Shih CF.Engineering Approach for Elastic-plastic Fracture Analysis. General Electric Co., Schenectady, New York: Corporate Research and Development Dept., 1981
    [4] Kumar V, German MDWWW.Development on Elastic-plastic Fracture Analysis (EPRI NP-3607). Palo Alto, California: Research & Development Center of EPRI, 1984
    [5] Zahoor A.Ductile Fracture Handbook. vols 1-3, EPRI NP-6301-D/N14- 1, Novetech Corp. and Electric Power Research Institute (Palo Alto, CA), 1989, 1990, 1991
    [6] Rice JR.A path independent integral and the approximate analysis of strain concentration by notches and cracks.Journal of Applied Mechanics, 1968, 35(2): 379-386
    [7] Zhu XK, Joyce JA.Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization.Engineering Fracture Mechanics, 2012, 85: 1-46
    [8] 嵇醒. 断裂力学判据的评述. 力学学报, 2016, 48(4): 741-753
    [8] (Ji Xing.A critical review on criteria of fracture mechanics.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 741-753 (in Chinese))
    [9] GB/T 21143-2014. 金属材料准静态断裂韧度的统一试验方法. 北京:中国标准出版社,2015
    [9] (GB/T 21143-2014. Metallic materials-unified method of test for determination of quasistatic fracture toughness. Beijing:Standards Press of China, 2015 (in Chinese))
    [10] ASTM E399-09. Standard test methods for linear-elastic plane-strain fracture toughness Klc of metallic materials. Annual Book of ASTM Standards: Vol.3.01. PhiladelPhia, PA: Ameriean Society for Testing and Materials, 2009
    [11] ASTM E1820-09. Standard test methods for measurement of fracture toughness// Annual Book of ASTM Standards: Vol.3.01. PhiladelPhia, PA: Ameriean Society for Testing and Materials, 2009
    [12] Sun PJ, Wang GZ, Xuan FZ, et al.Three-dimensional numerical analysis of out-of-plane creep crack-tip constraint in compact tension specimens.International Journal of Pressure Vessels and Piping, 2012, 96: 78-89
    [13] Traore Y, Paddea S, Bouchard PJ, et al.Measurement of the residual stress tensor in a compact tension weld specimen.Experimental Mechanics, 2013, 53(4): 605-618
    [14] Quino G, El Yagoubi J, Lubineau G.Characterizing the toughness of an epoxy resin after wet aging using compact tension specimens with non-uniform moisture content.Polymer Degradation and Stability, 2014, 109: 319-326
    [15] Feddern G, Macherauch E.New specimen geometry for KIC measurements. Z.Metallkunde, 1973, 64(12): 882-884
    [16] Szkodo M, Bień A. Influence of laser processing of the low alloy medium carbon structural steel on the development of the fatigue crack.Surface and Coatings Technology, 2016, 296: 117-123
    [17] Klysz S, Lisiecki J, Leski A, et al.Least squares method modification applied to the NASGRO equation.Journal of Theoretical and Applied Mechanics, 2013, 51(1): 3-13
    [18] Chiesa M, Nyhus B, Skallerud B, et al.Efficient fracture assessment of pipelines. A constraint-corrected SENT specimen approach.Engineering Fracture Mechanics, 2001, 68(5): 527-547
    [19] Kingklang S, Uthaisangsuk V.Plastic deformation and fracture behavior of X65 pipeline steel: Experiments and modeling.Engineering Fracture Mechanics, 2018, 191: 82-101
    [20] Hertelé S, De Waele W, Verstraete M, et al.J-integral analysis of heterogeneous mismatched girth welds in clamped single-edge notched tension specimens.International Journal of Pressure Vessels and Piping, 2014, 119: 95-107
    [21] Bao C, Cai LX, Dan C.Estimation of fatigue crack growth behavior for small-sized C-shaped inside edge-notched tension (CIET) specimen using compliance technique.International Journal of Fatigue, 2015, 81: 202-212
    [22] 但晨, 蔡力勋, 包陈等. 用于断裂韧度测试的C形环小试样的规则化方法与应用. 机械工程学报, 2015, 51(14): 54-65
    [22] (Dan Chen, Cai Lixun, Bao Chen, et al.Normalization method used to determine fracture toughness with C-ring small sized specimen and its application.Journal of Mechanical Engineering, 2015,51(14):54-65 (in Chinese))
    [23] Treifi M, Oyadiji SO, Tsang DKL.Computations of the stress intensity factors of double-edge and centre V-notched plates under tension and anti-plane shear by the fractal-like finite element method.Engineering Fracture Mechanics, 2009, 76(13): 2091-2108
    [24] Bucci RJ, Paris PC, Landes JD, et al.J integral estimation procedures//Fracture Toughness: Part II. ASTM International, 1972
    [25] Ernst HA, Paris PC, Landes JD.Estimations on J-integral and tearing modulus T from a single specimen test record//Fracture Mechanics. ASTM International, 1981
    [26] Zahoor A.Fracture of circumferentially cracked pipes.Journal of Pressure Vessel Technology, 1986, 108(4): 529-531
    [27] Zahoor A.Evaluation of J-integral estimation scheme for flawed throughwall pipes.Nuclear Engineering and Design, 1987, 100(1): 1-9
    [28] Goldman NL, Hutchinson JW.Fully plastic crack problems: the center-cracked strip under plane strain.International Journal of Solids and Structures, 1975, 11(5): 575-591
    [29] ASTM E1820-15: International. Standard test method for measurement of fracture toughness. ASTM International, 2015
    [30] Merkle JG, Corten HT.A J-integral analysis for the compact specimen, considering axial force as well as bending effects. Paper no. 74, PVP 33. American Society for Testing and Materials, 1974
    [31] 包陈, 蔡力勋, 但晨等.考虑裂尖约束效应的小尺寸 CIET试样延性断裂行为. 机械工程学报, 2017, 53(2): 34-44
    [31] (Bao Chen, Cai Lixun, Dan Chen, et al.Ductile fracture behavior of small-sized CIET specimen considering crack front constraint effect.Journal of Mechanical Engineering, 2017, 53(2): 34-44 (in Chinese))
    [32] Rice JR.A path independent integral and the approximate analysis of strain concentration by notches and cracks.Journal of Applied Mechanics, 1968, 35(2): 379-386
    [33] Chen H, Cai LX.Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle.Acta Materialia, 2016, 121: 181-189
    [34] Chen H, Cai LX.Unified elastoplastic model based on strain energy equivalence principle.Applied Mathematical Modelling, 2017, 52: 664-671
    [35] Chen H, Cai LX.Unified ring-compression model for determining tensile properties of tubular materials.Materials Today Communications, 2017, 13: 210-220
    [36] Chen H, Cai LX.Theoretical conversions of different hardness and tensile strength for ductile materials based on stress-strain curves.Metallurgical and Materials Transactions A, 2018, 49(4): 1090-1101
  • 期刊类型引用(8)

    1. 冯子夜,蔡力勋,于思淼. 以能量表征的平面应变及平面应力Ⅰ型裂纹J积分解. 航空学报. 2023(12): 206-216 . 百度学术
    2. 肖怀荣,蔡力勋,于思淼,包陈. 基于能量密度等效和三维尺寸的Ⅰ型裂纹试样弹塑性问题的半解析求解. 机械工程学报. 2022(14): 241-251 . 百度学术
    3. 许明阳,殷晨波,陈曦. 碳纤维布胶接修复含裂纹钢管仿真分析. 现代制造工程. 2021(01): 142-146 . 百度学术
    4. 许明阳,殷晨波,陈曦. 基于改进型支持向量机的胶接强度预测模型. 合肥工业大学学报(自然科学版). 2021(02): 164-169 . 百度学术
    5. 许明阳,殷晨波,李向东,陈曦. 复合材料补片胶接修复钢板影响参数仿真分析. 复合材料科学与工程. 2020(07): 40-44 . 百度学术
    6. 汤文治,肖汉斌,邹晟. 非连续数字图像相关方法在裂纹重构中的应用. 力学学报. 2019(04): 1101-1109 . 本站查看
    7. 叶宏德,党恒耀,李慧,董明洪. 船用10CrNiCu钢缺口拉伸性能及临界损伤参数研究. 中国造船. 2019(02): 50-58 . 百度学术
    8. 于思淼,蔡力勋,姚迪,包陈,陈辉,彭云强,韩光照. 准静态条件下金属材料的临界断裂准则研究. 力学学报. 2018(05): 1063-1080 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  1738
  • HTML全文浏览量:  277
  • PDF下载量:  387
  • 被引次数: 14
出版历程
  • 收稿日期:  2018-01-23
  • 刊出日期:  2018-05-17

目录

    /

    返回文章
    返回