EI、Scopus 收录
中文核心期刊

一种骨小管中液体流动产生的流量及切应力模型

武晓刚, 于纬伦, 王兆伟, 王宁宁, 岑海鹏, 王艳芹, 陈维毅

武晓刚, 于纬伦, 王兆伟, 王宁宁, 岑海鹏, 王艳芹, 陈维毅. 一种骨小管中液体流动产生的流量及切应力模型[J]. 力学学报, 2016, 48(5): 1208-1216. DOI: 10.6052/0459-1879-16-046
引用本文: 武晓刚, 于纬伦, 王兆伟, 王宁宁, 岑海鹏, 王艳芹, 陈维毅. 一种骨小管中液体流动产生的流量及切应力模型[J]. 力学学报, 2016, 48(5): 1208-1216. DOI: 10.6052/0459-1879-16-046
Wu Xiaogang, Yu Weilun, Wang Zhaowei, Wang Ningning, Cen Haipeng, Wang Yanqin, Chen Weiyi. A CANALICULAR FLUID FLOWMODEL ASSOCIATED WITH ITS FLUID FLOWRATE AND FLUID SHEAR STRESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1208-1216. DOI: 10.6052/0459-1879-16-046
Citation: Wu Xiaogang, Yu Weilun, Wang Zhaowei, Wang Ningning, Cen Haipeng, Wang Yanqin, Chen Weiyi. A CANALICULAR FLUID FLOWMODEL ASSOCIATED WITH ITS FLUID FLOWRATE AND FLUID SHEAR STRESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1208-1216. DOI: 10.6052/0459-1879-16-046
武晓刚, 于纬伦, 王兆伟, 王宁宁, 岑海鹏, 王艳芹, 陈维毅. 一种骨小管中液体流动产生的流量及切应力模型[J]. 力学学报, 2016, 48(5): 1208-1216. CSTR: 32045.14.0459-1879-16-046
引用本文: 武晓刚, 于纬伦, 王兆伟, 王宁宁, 岑海鹏, 王艳芹, 陈维毅. 一种骨小管中液体流动产生的流量及切应力模型[J]. 力学学报, 2016, 48(5): 1208-1216. CSTR: 32045.14.0459-1879-16-046
Wu Xiaogang, Yu Weilun, Wang Zhaowei, Wang Ningning, Cen Haipeng, Wang Yanqin, Chen Weiyi. A CANALICULAR FLUID FLOWMODEL ASSOCIATED WITH ITS FLUID FLOWRATE AND FLUID SHEAR STRESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1208-1216. CSTR: 32045.14.0459-1879-16-046
Citation: Wu Xiaogang, Yu Weilun, Wang Zhaowei, Wang Ningning, Cen Haipeng, Wang Yanqin, Chen Weiyi. A CANALICULAR FLUID FLOWMODEL ASSOCIATED WITH ITS FLUID FLOWRATE AND FLUID SHEAR STRESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1208-1216. CSTR: 32045.14.0459-1879-16-046

一种骨小管中液体流动产生的流量及切应力模型

基金项目: 国家自然科学基金(11302143,11572213,11632013)、山西自然科学基金(2014021013)、山西省高等学校创新人才支持计划(143230146-S)、山西省高等学校科技创新项目(2014116)和大连理工大学精细化工国家重点实验室开放课题基金(KF1511)资助项目.
详细信息
    通讯作者:

    陈维毅,教授,主要研究方向:生物力学.E-mail:chenweiyi211@163.com

  • 中图分类号: R318.01

A CANALICULAR FLUID FLOWMODEL ASSOCIATED WITH ITS FLUID FLOWRATE AND FLUID SHEAR STRESS

  • 摘要: 骨组织受力变形后其内部液体就会流动,同时在其微观结构——骨单元壁中扩散,并进一步产生一系列与骨液流动相关的物理效应,如流体剪切应力、流动电位等,这些物理效应被细胞感知并做出破骨或成骨等反应,来使骨适应外部载荷环境.鉴于骨组织产生的内部液体流动很难实验测定,理论模拟是目前的主要研究手段.基于骨单元的多孔弹性性质建立了骨小管内部液体的流动模型,该模型将骨单元所受的外部载荷与骨小管内部液体的压力、流速、流量和切应力联系起来,并进一步可以研究其力传导与力电传导机制.骨小管模型的建立分别基于中空和考虑哈弗液体的骨单元模型,并考虑了骨单元外壁的弹性约束和刚性位移约束两种边界条件.最终得到骨单元在外部轴向载荷作用下,骨小管内部液体的流量及流体切应力的解析解.结果表明:骨小管中的液体流量与流体切应力都正比于应变载荷幅值和频率,并由载荷的应变率决定.因此应变率可以作为控制流量和流体切应力的一种生理载荷因素.流量随着骨小管半径的增大而非线性增大,而流体切应力则随着骨小管半径的增大而线性增大.此外,在相同的载荷下,含哈弗液体的骨单元的模型中,骨小管中液体的流量和切应力均大于中空骨单元模型.
    Abstract: Stressed bone can be deformed to lead to an interstitial fluid flow or diffusion in its microstructure-osteon (wall). Actually in this fluid diffusion process, some physical effects related with fluid stimuli are induced, such as fluid shear stress (FSS) and streaming potential. These effects may enable the bone cells to detect and respond to the process of bone-resorbing and bone-forming to adapt the external loading environment. Due to the limitation of experimental approach, theoretical simulation has become the main method to study the bone's interstitial fluid flowing behavior. Based on the poroelasticity, a physical canaliculi model is developed to link the mechanical loading on osteon scale to the scale of canalicular fluid flow, which makes a significant step to study the mechanism of the bone mechanotransduction and electromechanotransduction. This developed canaliculi model is based on a hollow osteon model and a Haversian fluid considered osteon model, with two boundary cases on the outer wall, elastic restrained and rigid confined. Finally, the analytical solutions for canalicular fluid flow rates (FFR) and shear stress are obtained. The results predict that the amplitudes of fluid flow rate and shear stress are proportional to strain amplitude and frequency. However, the key loading factor governing canalicular fluid flow behavior is the strain rate, which is a representative loading parameter under a physiological state. The larger canalicular radius is, the larger amplitudes of FFR and FSS generalized, especially, the FSS amplitude is proportional to canalicular radius. The Haversian fluid can enhance the whole canalicular fluid flow rates and shear stress fields.
  • 1 Wu X, Chen W, Gao Z, et al. The effects of Haversian fluid pressure and harmonic axial loading on the poroelastic behaviors of a single osteon. Science China Physics, Mechanics and Astronomy, 2012, 55(9):1646-1656
    2 Wang L, Ciani C, Doty SB, et al. Delineating bone's interstitial fluid pathway in vivo. Bone, 2004, 34(3):499-509
    3 Cowin SC. Bone poroelasticity. Journal of Biomechanics, 1999, 32(3):217-238
    4 Anderson EJ, Kaliyamoorthy S, Alexander JID, et al. Nano-microscale models of periosteocytic flow show differences in stresses imparted to cell body and processes. Annals of Biomedical Engineering, 2005, 33(1):52-62
    5 Ahn AC, Grodzinsky AJ. Relevance of collagen piezoelectricity to "Wolff's Law":A critical revie.Med Eng Phys,2009, 31(7):733-741
    6 Brown TD. Techniques for mechanical stimulation of cells in vitro:a review. Journal of Biomechanics, 2000, 33(1):3-14
    7 Salzstein RA, Pollack SR, Mak AF, et al. Electromechanical potentials in cortical bone-I. A continuum approach. Journal of Biomechanics, 1987, 20(3):261-270
    8 Srinivasan S, Gross T. Canalicular fluid flow induced by bending of a long bone. Medical Engineering & Physics, 2000, 22(2):127-133
    9 Cowin S, Weinbaum S, Zeng Y. A case for bone canaliculi as the anatomical site of strain generated potentials. Journal of Biomechanics, 1995, 28(11):1281-1297
    10 Zeng Y, Cowin S, Weinbaum S. A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon. Annals of Biomedical Engineering, 1994, 22(3):280-292
    11 Zhang D, Weinbaum S, Cowin SC. On the calculation of bone pore water pressure due to mechanical loading. International Journal of Solids and Structures, 1998, 35(34):4981-4997
    12 Nguyen V-H, Lemaire T, Naili S. Anisotropic poroelastic hollow cylinders with damaged periphery under harmonic axial loading:relevance to bone remodelling. Multidiscipline Modeling in Materials and Structures, 2009, 5(3):205-222
    13 Rémond A, Naili S, Lemaire T. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties:A finite element study. Biomech Model Mechanobiol, 2008, 7(6):487-495
    14 Nguyen VH, Lemaire T, Naili S. Poroelastic behaviour of cortical bone under harmonic axial loading:A finite element study at the osteonal scale. Med Eng Phys, 2010, 32(4):384-390
    15 Cowin SC, Gailani G, Benalla M. Hierarchical poroelasticity:movement of interstitial fluid between porosity levels in bones. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 2009, 367(1902):3401-3444
    16 Liu S, Wang F, Liu R. Fluid flow and fluid shear stress in canaliculi induced by external mechanical loading and blood pressure oscillation. Applied Mathematics and Mechanics, 2015, 36(5):681-692
    17 Wu XG, Chen WY. A hollow osteon model for examining its poroelastic behaviors:Mathematically modeling an osteon with different boundary cases. European Journal of Mechanics-A/Solids, 2013, 40:34-49
    18 Wu XG, Chen WY, Wang DX. Mathematical osteon model for examining poroelastic behaviors. Applied Mathematics and Mechanics, 2013, 34(4):405-416
    19 Wu XG, Chen WY. Poroelastic behaviors of the osteon:A comparison of two theoretical osteon models. Acta Mechanica Sinica, 2013, 29(4):612-621
    20 Wu XG, Yu WL, Cen HP, et al. Hierarchical model for strain generalized streaming potential induced by the canalicular fluid flow of an osteon. Acta Mechanica Sinica, 2015, 31(1):112-121
    21 Cheng AD. Material coefficis of anisotropic poroelasticity. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2):199-205
    22 You L, Cowin SC, Schaffler MB, et al. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. Journal of Biomechanics, 2001, 34(11):1375-1386
    23 Boyde A. Scanning electron microscope studies of bone. The Biochemistry and Physiology of Bone, 1972, 1:259-310
    24 Cooper RR, Milgram JW, Robinson RA. Morphology of the osteon. The Journal of Bone & Joint Surgery, 1966, 48(7):1239-1271
    25 Nguyen VH, Lemaire T, Naili S. Numerical study of deformationinduced fluid flows in periodic osteonal matrix under harmonic axial loading. Comptes Rendus Mecanique, 2009, 337(5):268-276
    26 Buckley M, Banes A, Levin L, et al. Osteoblasts increase their rate of division and align in response to cyclic, mechanical tension in vitro. Bone and Mineral, 1988, 4(3):225-236
    27 Wang L, Fritton SP, Cowin SC, et al. Fluid pressure relaxation depends upon osteonal microstructure:modeling an oscillatory bending experiment. Journal of Biomechanics, 1999, 32(7):663-672
    28 Qin YX, Kaplan T, Saldanha A, et al. Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. Journal of Biomechanics, 2003, 36(10):1427-1437
    29 Nguyen VH, Lemaire T, Naili S. Influence of interstitial bone microcracks on strain-induced fluid flow. Biomech Model Mechanobiol, 2011, 10(6):963-972
    30 Beno T, Yoon YJ, Cowin SC, et al. Estimation of bone permeability using accurate microstructural measurements. J Biomech, 2006, 39(13):2378-87
    31 Fritton SP, McLeod KJ, Rubin CT. Quantifying the strain history of bone:spatial uniformity and self-similarity of low-magnitude strains. Journal of Biomechanics, 2000, 33(3):317-325
    32 Rémond A, Naili S, Lemaire T. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties:a finite element study. Biomechanics and Modeling in Mechanobiology, 2008, 7(6):487-495
    33 Guo H, Maher SA, Torzilli PA. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression. Journal of Biomechanics, 2015, 48(1):166-170
  • 期刊类型引用(4)

    1. 李朝鑫,武晓刚,孙玉琴,秦迎泽,段王平,张美珍,王艳芹,陈维毅,卫小春. 微流控通道内细胞及其初级纤毛的力传导行为. 力学学报. 2021(01): 260-277 . 本站查看
    2. 于纬伦,武晓刚,李朝鑫,孙玉琴,陈维毅. 受载骨内液流刺激信号的跨尺度传导行为. 医用生物力学. 2020(02): 208-215 . 百度学术
    3. 于纬伦,武晓刚,李朝鑫,孙玉琴,张美珍,陈维毅. 骨陷窝-骨细胞形状和方向对骨单元内液体流动行为的影响. 力学学报. 2020(03): 843-853 . 本站查看
    4. 王兆伟,武晓刚,陈魁俊,薛雅楠,王宁宁,赵腾,于纬伦,王艳芹,陈维毅. 一种力–电协同驱动的细胞微流控培养腔理论模型. 力学学报. 2018(01): 124-137 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  1115
  • HTML全文浏览量:  122
  • PDF下载量:  653
  • 被引次数: 12
出版历程
  • 收稿日期:  2016-02-05
  • 修回日期:  2016-05-10
  • 刊出日期:  2016-09-17

目录

    /

    返回文章
    返回