EI、Scopus 收录
中文核心期刊

机器人无标定视觉伺服控制研究进展

陶波, 龚泽宇, 丁汉

陶波, 龚泽宇, 丁汉. 机器人无标定视觉伺服控制研究进展[J]. 力学学报, 2016, 48(4): 767-783. DOI: 10.6052/0459-1879-16-161
引用本文: 陶波, 龚泽宇, 丁汉. 机器人无标定视觉伺服控制研究进展[J]. 力学学报, 2016, 48(4): 767-783. DOI: 10.6052/0459-1879-16-161
Tao Bo, Gong Zeyu, Ding Han. SURVEY ON UNCALIBRATED ROBOT VISUAL SERVOING CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 767-783. DOI: 10.6052/0459-1879-16-161
Citation: Tao Bo, Gong Zeyu, Ding Han. SURVEY ON UNCALIBRATED ROBOT VISUAL SERVOING CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 767-783. DOI: 10.6052/0459-1879-16-161
陶波, 龚泽宇, 丁汉. 机器人无标定视觉伺服控制研究进展[J]. 力学学报, 2016, 48(4): 767-783. CSTR: 32045.14.0459-1879-16-161
引用本文: 陶波, 龚泽宇, 丁汉. 机器人无标定视觉伺服控制研究进展[J]. 力学学报, 2016, 48(4): 767-783. CSTR: 32045.14.0459-1879-16-161
Tao Bo, Gong Zeyu, Ding Han. SURVEY ON UNCALIBRATED ROBOT VISUAL SERVOING CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 767-783. CSTR: 32045.14.0459-1879-16-161
Citation: Tao Bo, Gong Zeyu, Ding Han. SURVEY ON UNCALIBRATED ROBOT VISUAL SERVOING CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 767-783. CSTR: 32045.14.0459-1879-16-161

机器人无标定视觉伺服控制研究进展

基金项目: 国家自然科学基金资助项目(51535004).
详细信息
    通讯作者:

    陶波,教授,主要研究方向:智能制造与机器人技术.E-mail:taobo@hust.edu.cn

  • 中图分类号: TP242

SURVEY ON UNCALIBRATED ROBOT VISUAL SERVOING CONTROL

  • 摘要: 视觉伺服控制是机器人系统重要的控制手段. 相比传统的在标定条件下使用的视觉伺服系统,无标定视觉伺服系统具有更高的灵活性与适应性,是机器人伺服控制系统未来重要的发展方向和研究热点. 本文从目标函数选择、控制器设计、运动轨迹规划三方面综述了无标定视觉伺服控制系统近年来的主要研究进展. 首先根据目标函数的形式,分析了基于位置的视觉伺服、基于图像的视觉伺服以及混合视觉伺服各自的特点与应用;在控制器设计方面,根据是否在设计过程中考虑机器人的非线性动力学特性,分别介绍了考虑机器人运动学与考虑机器人动力学的无标定视觉伺服控制器的设计,重点突出了雅克比矩阵的构造与估计方法;针对无标定视觉伺服系统运动轨迹可能存在的问题,从空间轨迹优化与障碍规避的角度,阐述了已有的可行解决方案. 最后,基于当前的研究进展展望了无标定视觉伺服的未来研究方向.
    Abstract: Visual servo control is one of the most important control strategies of robot system. Uncalibrated visual servoing system reveals preferable flexibility and adaptability in comparison with the classical visual servo systems which require system calibration, therefore it becomes a significant branch and hotspot of research in the field of visual servoing. This paper reviews the research progress of uncalibrated visual servo control system in recent years from three perspectives, which are task function selection, controller design as well as motion planning. First, this paper analyzes the characteristics and applications of position-based visual servoing, image-based visual servoing as well as the hybrid visual servoing based on the form of task functions. As for the controller design, based on the fact whether robot dynamics are considered, this paper introduces the design of uncalibrated visual servo controller which takes robot kinematics or robot dynamics into consideration, and mainly emphasizes the formation and estimation of Jacobian matrixes. As for the possible problems in motion path of uncalibrated visual servo control, this paper also sets forth the existing feasible solutions from the perspective of motion path optimization and obstacle avoidance. Finally, we outline the direction in the future work of uncalibrated visual servoing research based on state of the art.
  • 1 方勇纯. 机器人视觉伺服研究综述. 智能系统学报, 2008, 3(2): 109-114 (Fang Yongchun. A survey of robot visual servoing. CAAI Transactions on Intelligent Systems, 2008, 3(2): 109-114 (in Chinese))
    2 贾丙西, 刘山, 张凯祥等. 机器人视觉伺服研究进展: 视觉系统与控制策略. 自动化学报, 2015, 41(5): 861-873 (Jia Bingxi, Liu Shan, Zhang Kaixiang, et al. Survey on robot visual servo control: vision system and control strategies. Acta Automatica Sinica, 2015, 41(5): 861-873 (in Chinese))
    3 李牧. 机器人无标定视觉伺服关键技术的研究. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2008 (Li Mu. Research on robot uncalibrated visual servoing key technique. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2008 (in Chinese))
    4 苏剑波. 机器人无标定手眼协调. 北京: 电子工业出版社, 2010 (Su Jianbo. Uncalibrated Robot Hand-Eye Coordination. Beijing: Publishing House of Electronics Industry, 2010 (in Chinese))
    5 辛菁. 机器人无标定视觉伺服控制系统研究. [博士论文]. 西安: 西安理工大学, 2007 (Xin Jing. Research on robot uncalibrated visual servoing control system. [PhD Thesis]. Xi'an: Xi'an University of Technology, 2007 (in Chinese))
    6 Cai C, Somani N, Nair S, et al. Uncalibrated stereo visual servoing for manipulators using virtual impedance control. In: Control Automation Robotics & Vision (ICARCV), 2014 13th International Conference, 2014. 1888-1893
    7 Liang XW, Wang HS, Liu YH, et al. A unified design method for adaptive visual tracking control of robots with eye-in-hand/fixed camera configuration. Automatica, 2015, 59: 97-105
    8 Liu YH, Wang HS, Wang CY, et al. Uncalibrated visual servoing of robots using a depth-independent interaction matrix. IEEE Transactions on Robotics, 2006, 22(4): 804-817
    9 Liu M, Pradalier C, Siegwart R. Visual homing from scale with an uncalibrated omnidirectional camera. IEEE Transactions on Robotics, 2013, 29(6): 1353-1365
    10 Wang HS, Liu YH, Chen WD. Uncalibrated visual tracking control without visual velocity. IEEE Transactions on Control Systems Technology, 2010, 18(6): 1359-1370
    11 Hua CC, Wang YQ, Guan XP. Visual tracking control for an uncalibrated robot system with unknown camera parameters. Robotics and Computer-Integrated Manufacturing, 2014, 30(1): 19-24
    12 徐德, 谭民, 李原. 机器人视觉测量与控制. 第二版. 北京: 国防工业出版社, 2011 (Xu De, Tan Min, Li Yuan. Visual Measurement and Control for Robots. Second Edition. Beijing: National Defence Industry Press, 2011 (in Chinese))
    13 Chaumette F, Hutchinson S. Visual servo control. I. Basic approaches. IEEE Robotics & Automation Magazine, 2006, 13(4): 82-90
    14 Cai CX, Dean-Leon E, Mendoza D, et al. Uncalibrated 3D stereo image-based dynamic visual servoing for robot manipulators. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013, 63-70
    15 Marshall M, Lipkin H. Kalman filter visual servoing control law. In: 2014 IEEE International Conference on Mechatronics and Automation (ICMA), 2014
    16 Marshall M, Matthews M, Hu AP, et al. Uncalibrated Visual Servoing for Intuitive Human Guidance of Robots. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), 2012, 4463-4468
    17 Hutchinson S, Hager GD, Corke PI. A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 1996, 12(5): 651-670
    18 Hao M, Sun ZQ. A universal state-space approach to uncalibrated model-free visual servoing. IEEE-ASME Transactions on Mechatronics, 2012, 17(5): 833-846
    19 Su J, Zhang Y, Luo Z. Online estimation of image jacobian matrix for uncalibrated dynamic hand-eye coordination. International Journal of Systems, Control and Communications, 2008, 1(1): 31-52
    20 Zhao QJ, Zhang LQ, Chen YJ. Online estimation technique for Jacobian matrix in robot visual servo systems. In: IEEE Conference on Industrial Electronics and Applications, 2008. 1270-1275
    21 Piepmeier JA, McMurray GV, Lipkin H. A dynamic quasi-Newton method for uncalibrated visual servoing. In: IEEE International Conference on Robotics and Automation, New York, 1999. 1595-1600
    22 Piepmeier JA, Lipkin H. Uncalibrated eye-in-hand visual servoing. International Journal of Robotics Research, 2003, 22(10-11): 805-819
    23 Espiau B, Chaumette F, Rives P. A new approach to visual servoing in robotics. IEEE Transactions on Robotics and Automation, 1992, 8(3): 313-326
    24 Andreff N, Espiau B, Horaud R. Visual servoing from lines. International Journal of Robotics Research, 2002, 21(8): 679-699
    25 Mahony R, Hamel T. Image-based visual servo control of aerial robotic systems using linear image features. IEEE Transactions on Robotics, 2005, 21(2): 227-239
    26 Malis E, Borrelly JJ, Rives P. Intrinsics-free visual servoing with respect to straight lines. In: 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002. 384-389
    27 Wang HS, Liu YH, Zhou DX. Adaptive visual servoing using point and line features with an uncalibrated eye-in-hand camera. IEEE Transactions on Robotics, 2008, 24(4): 843-857
    28 Liu Y-H, Wang H, Chen W, et al. Adaptive visual servoing using common image features with unknown geometric parameters. Automatica, 2013, 49(8): 2453-2460
    29 Chaumette F. Image moments: A general and useful set of features for visual servoing. IEEE Transactions on Robotics and Automation, 2004, 20(4): 713-723
    30 Tahri O, Chaumette F. Point-based and region-based image moments for visual servoing of planar objects. IEEE Transactions on Robotics, 2005, 21(6): 1116-1127
    31 Tahri O, Mezouar Y, Chaumette F, et al. Decoupled image-based visual servoing for cameras obeying the unified projection model. IEEE Transactions on Robotics, 2010, 26(4): 684-697
    32 Zhang J, Liu D. Calibration-free and model-independent method for high-DOF image-based visual servoing. Journal of Control Theory and Applications, 2013, 11(1): 132-140
    33 李优新, 毛宗源, 田联房. 基于图像矩与神经网络的机器人四自由度视觉伺服. 控制理论与应用, 2009, 26(10): 1162-1166 (Li Youxin, Mao Zongyuan, Tian Lianfang. Visual servoing of 4DOF using image moments and neural network. Control Theory & Applications, 2009, 26(10): 1162-1166 (in Chinese))
    34 Qian J, Su JB. Online estimation of image Jacobian matrix by Kalman-Bucy filter for uncalibrated stereo vision feedback. In: IEEE International Conference on Robotics and Automation, 2002
    35 Pari L, Sebastian JM, Traslosheros A, et al. Image based visual servoing: estimated image Jacobian by using fundamental matrix vs analytic Jacobian. Image Analysis and Recognition, 2008, 5112: 706-717
    36 Sebastian JM, Pari L, Angel L, et al. Uncalibrated visual servoing using the fundamental matrix. Robotics and Autonomous Systems, 2009, 57(1): 1-10
    37 Pari L, Sebastian JM, Traslosheros A, et al. A comparative study between analytic and estimated image jacobian by using a stereoscopic system of cameras. In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS 2010), 2010: 6208-6215
    38 Ma Z, Su J. Robust uncalibrated visual servoing control based on disturbance observer. In: ISA Transactions, 2015
    39 Cai CX, Dean-Leon E, Somani N, et al. 6D image-based visual servoing for robot manipulators with uncalibrated stereo cameras. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (Iros 2014), 2014. 736-742
    40 Chaumette F. Potential problems of stability and convergence in image-based and position-based visual servoing. In: The Confluence of Vision and Control, Springer, 1998. 66-78
    41 Marey M, Chaumette F. Analysis of classical and new visual servoing control laws. In: 2008 IEEE International Conference on Robotics and Automation, 2008. 3244-3249
    42 Shademan A, Jagersand M. Three-view uncalibrated visual servoing. In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS 2010), 2010
    43 Kazemi M, Gupta K, Mehrandezh M. Path-planning for visual servoing: A review and issues. In: Visual Servoing via Advanced Numerical Methods, Springer, 2010: 189-207
    44 Corke PI, Hutchinson SA. A new partitioned approach to imagebased visual servo control. IEEE Transactions on Robotics and Automation, 2001, 17(4): 507-515
    45 Malis E, Chaumette F, Boudet S. 2-1/2-D visual servoing. IEEE Transactions on Robotics and Automation, 1999, 15(2): 238-250
    46 Malis E, Chaumette F. 2 1/2 D visual servoing with respect to unknown objects through a new estimation scheme of camera displacement. International Journal of Computer Vision, 2000, 37(1): 79-97
    47 Malis E, Chaumette F. Theoretical improvements in the stability analysis of a new class of model-free visual servoinor methods. IEEE Transactions on Robotics and Automation, 2002, 18(2): 176-186
    48 Chen J, Behal A, Dawson DM, et al. Adaptive visual servoing in the presence of intrinsic calibration uncertainty. In: 42nd IEEE Conference on Decision and Control, New York, 2003. 5396-5401
    49 Fang Y, Dixon WE, Dawson DM, et al. An exponential class of model-free visual servoing controllers in the presence of uncertain camera calibration. In: 2003 Proceedings 42nd IEEE Conference, the Decision and Control, 2003
    50 Hu G, MacKunis W, Gans N, et al. Homography-based visual servocontrol via an uncalibrated camera. In: 2008 American Control Conference, New York, 2008. 4791-4796
    51 Hu G, MacKunis W, Gans N, et al. Homography-based visual servo control with imperfect camera calibration. IEEE Transactions on Automatic Control, 2009, 54(6): 1318-1324
    52 Hu G, Dixon WE, Gupta S, et al. A quaternion formulation for homography-based visual servo control. In: 2006 IEEE International Conference on Robotics and Automation. New York, 2006. 2391-2396
    53 Wang HS, Liu YH, Zhou DX. Dynamic visual tracking for manipulators using an uncalibrated fixed camera. IEEE Transactions on Robotics, 2007, 23(3): 610-617
    54 熊有伦. 机器人技术基础. 武汉: 华中科技大学出版社, 1996 (Xiong Youlun. Fundamentals of Robot Techniques. Wuhan: Huazhong University of Science and Technology Press, 1996 (in Chinese))
    55 Shademan A, Farahmand AM, Jägersand M. Robust jacobian estimation for uncalibrated visual servoing. In: 2010 IEEE International Conference on the Robotics and Automation (ICRA), 2010
    56 Janabi-Sharifi F, Deng LF, Wilson WJ. Comparison of basic visual servoing methods. IEEE-ASME Transactions on Mechatronics, 2011, 16(5): 967-983
    57 Music J, Bonkovic M, Cecic M. Comparison of uncalibrated modelfree visual servoing methods for small-amplitude movements: a simulation study. International Journal of Advanced Robotic Systems, 2014, 11(1):1-16
    58 王宜举,修乃华. 非线性最优化理论与方法. 北京: 科学出版社, 2012 (Wang Yiju, Xiu Laihua. Nonlinear Optimization Theory and Method. Beijing: Science Press, 2012 (in Chinese))
    59 Jägersand M, Fuentes O, Nelson R. Experimental evaluation of uncalibrated visual servoing for precision manipulation. In: Proceedings of 1997 IEEE International Conference, the Robotics and Automation, 1997
    60 Piepmeier JA, McMurray GV, Lipkin H. Uncalibrated dynamic visual servoing. IEEE Transactions on Robotics and Automation, 2004, 20(1): 143-147
    61 Piepmeier JA, McMurray GV, Lipkin H. Experimental results using vision-based control for uncalibrated robotic systems. In: Proceedings of the Photonics East'99, 1999
    62 Hosoda K, Asada M. Versatile visual servoing without knowledge of true Jacobian. In: Proceedings of the Intelligent Robots and Systems' 94'Advanced Robotic Systems and the Real World, 1994
    63 Munnae J, Lipkin H. Kinematic robot tracking using uncalibrated cameras. In: 13th World Congress in Mechanism and Machine Science, 2011
    64 Piepmeier JA, Firebaugh S, Olsen CS. Uncalibrated visual servo control of magnetically actuated microrobots in a fluid environment. Micromachines, 2014, 5(4): 797-813
    65 高振东, 苏剑波. 带有时延补偿的图像雅可比矩阵估计方法. 控制理论与应用, 2009, 26(1): 23-27 (Gao Zhendong, Su Jianbo. The estimation of image Jacobian matrix with time-delay compensation for uncalibrated visual servoing. Control Theory & Applications, 2009, 26(1): 23-27 (in Chinese))
    66 Bonkovic M, Hace A, Jezernik K. Population-based uncalibrated visual servoing. IEEE-ASME Transactions on Mechatronics, 2008, 13(3): 393-397
    67 Kim GW. Uncalibrated visual servoing through the efficient estimation of the image jacobian for large residual. Journal of Electrical Engineering & Technology, 2013, 8(2): 385-392
    68 Munnae J. Uncalibrated robotic visual servo tracking for large residual problems. [PhD Thesis]. Georgia Institute of Technology, 2010
    69 赵杰, 李牧, 李戈等. 一种无标定视觉伺服控制技术的研究. 控制与决策, 2006, 21(9): 1015-1019 (Zhao Jie, Li Mu, Li Ge, et al. Study on uncalibrated visual servoing technique. Control and Decision, 2006, 21(9): 1015-1019 (in Chinese))
    70 杨诚, 匡森, 宋彩温. 基于动态BFGS 法的无标定视觉伺服控制. 中国科学技术大学学报, 2015, 45(1): 1-8 (Yang Cheng, Kuang Sen, Song Caiwen. Dynamic BFGS method for uncalibrated visual servoing. Journal of University of Science and Technology of China, 2015, 45(1): 1-8 (in Chinese))
    71 Farahmand AM, Shademan A, Jagersand M. Global visual-motor estimation for uncalibrated visual servoing. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. 1975-1980
    72 李鹤喜, 石永华, 王国荣. 采用SVR 雅可比估计器的焊接机器人视觉导引. 华南理工大学学报(自然科学版), 2013, 41(7): 19-25 (Li Hexi, Shi Yonghua, Wang Guorong. Vision-guided welding robot based on SVR-Jacobian estimator. Journal of South China University of Technology (Natural Science Edition), 2013, 41(7): 19-25 (in Chinese))
    73 Kale A, Meena ML, Gopal M. Kernel machines for uncalibrated visual servoing of robots. In: 2013 IEEE International Symposium on Intelligent Control, 2013. 364-369
    74 Liu SQ, Liu SY. Online-estimation of image jacobian based on adaptive Kalman filter. In: Proceedings of the Control Conference, 2015
    75 Lü XD, Huang XH. Fuzzy adaptive Kalman filtering based estimation of image Jacobian for uncalibrated visual servoing. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006. 2167-2172
    76 张捷, 刘丁. 基于鲁棒信息滤波器的图像雅可比矩阵在线估计. 西安理工大学学报, 2011, 27(2): 133-138 (Zhang Jie, Liu Ding. Online estimation of image jacobian matrix based on robust information filter. Journal of Xi'an University of Technology, 2011, 27(2): 133-138 (in Chinese))
    77 辛菁, 白蕾, 刘丁. 基于自适应Kalman 滤波的机器人6DOF 无标定视觉定位. 系统仿真学报, 2014, 26(3): 586-591 (Xin Jing, Bai Lei, Liu Ding. Adaptive Kalman filter-based robot 6DOF uncalibrated vision positioning. Journal of System Simulation, 2014, 26(3): 586-591 (in Chinese))
    78 Zhong XG, Zhong XY, Peng XF. Robots visual servo control with features constraint employing Kalman-neural-network filtering scheme. Neurocomputing, 2015, 151: 268-277
    79 刘文芳, 邴志刚, 卢胜利等. 带时延补偿的图像雅可比矩阵在线估计方法. 计算机工程与应用, 2010, 46(21): 181-184 (Liu Wenfang, Bing Zhigang, Lu Shengli, et al. Online estimation of image Jacobian matrix with time-delay compensation. Computer Engineering and Applications, 2010, 46(21): 181-184 (in Chinese))
    80 王新梅, 魏武, 刘玮等. 鲁棒卡尔曼滤波下的图像雅可比矩阵带时延补偿的估计. 控制理论与应用, 2015, 32(8): 1052-1057 (Wang Xinmei, Wei Wu, Liu Wei, et al. Estimation of image Jacobian matrix with time-delay compensation based on robust Kalman filtering. Control Theory & Applications, 2015, 32(8): 1052-1057 (in Chinese))
    81 Ma J, Zhao Q. Robot visual servo with fuzzy particle filter. Journal of Computers, 2012, 7(4): 842-845
    82 Su JB, Ma HY, Qiu WB, et al. Task-independent robotic uncalibrated hand-eye coordination based on the extended state observer. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2004, 34(4): 1917-1922
    83 Su JB, Qiu WB, Ma HY, et al. Calibration-free robotic eye-hand coordination based on an auto disturbance-rejection controller. IEEE Transactions on Robotics and Automation, 2004, 20(5): 899-907
    84 Su JB. Convergence analysis for the uncalibrated robotic hand-eye coordination based on the unmodeled dynamics observer. Robotica, 2010, 28: 597-605
    85 Comport AI, Marchand E, Chaumette F. Statistically robust 2-D visual servoing. IEEE Transactions on Robotics, 2006, 22(2): 416-421
    86 Shademan A, Jagersand M. Robust sampling-based planning for uncalibrated visual servoing. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012. 2663-2669
    87 Cheah CC, Liu C, Slotine JJE. Adaptive vision based tracking control of robots with uncertainty in depth information. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, 2007. 2817-2822
    88 Dixon WE. Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics. IEEE Transactions on Automatic Control, 2007, 52(3): 488-493
    89 Cheah CC, Hou SP, Zhao Y, et al. Adaptive vision and force tracking control for robots with constraint uncertainty. IEEE-ASME Transactions on Mechatronics, 2010, 15(3): 389-399
    90 Cheah CC, Liu CA, Slotine JJE. Adaptive Jacobian vision based control for robots with uncertain depth information. Automatica, 2010, 46(7): 1228-1233
    91 Chaumette F, Hutchinson S. Visual servo control. II. Advanced approaches. IEEE Robotics & Automation Magazine, 2007, 14(1): 109-118
    92 Braganza D, Dixon WE, Dawson DM, et al. Tracking control for robot manipulators with kinematic and dynamic uncertainty. International Journal of Robotics & Automation, 2008, 23(2): 117-126
    93 Cheah CC, Liu C, Slotine J. Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models. IEEE Transactions on Automatic Control, 2006, 51(6): 1024-1029
    94 Cheah CC, Liu C, Slotine JJE. Adaptive tracking control for robots with unknown kinematic and dynamic properties. International Journal of Robotics Research, 2006, 25(3): 283-296
    95 梁新武. 机械手无标定动态视觉伺服研究. [博士论文]. 武汉: 华中科技大学, 2011 (Liang Xinwu. Research on the unealibrated dynamic visual servoing of robotic manipulator. [PhD Thesis]. Wuhan: Huazhong University of Science and technology, 2011 (in Chinese))
    96 Akella MR. Vision-based adaptive tracking control of uncertain robot manipulators. IEEE Transactions on Robotics, 2005, 21(4): 748-753
    97 Santamaria-Navarro A, Andrade-Cetto J. Uncalibrated image-based visual servoing. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), 2013, 5247-5252
    98 Cheah CC, Liu C, Slotine J. Adaptive Jacobian tracking control of robots based on visual task-space information. In: Proceedings of 2005 IEEE International Conference the Robotics and Automation, 2005
    99 Lizarralde F, Leite AC, Hsu L, et al. Adaptive visual servoing scheme free of image velocity measurement for uncertain robot manipulators. Automatica, 2013, 49(5): 1304-1309
    100 Wang HL. Adaptive visual tracking for robotic systems without image-space velocity measurement. Automatica, 2015, 55: 294-301
    101 Liang XW, Huang XH, Wang M, et al. Improved stability results for visual tracking of robotic manipulators based on the depthindependent interaction matrix. IEEE Transactions on Robotics, 2011, 27(2): 371-379
    102 Wang H, Liu YH, Chen W. Visual tracking of robots in uncalibrated environments. Mechatronics, 2012, 22(4): 390-397
    103 Wang HS, Jiang MK, Chen WD, et al. Visual servoing of robots with uncalibrated robot and camera parameters. Mechatronics, 2012, 22(6): 661-668
    104 Wang HS, Liu YH, Chen WD, et al. A new approach to dynamic eye-in-hand visual tracking using nonlinear observers. IEEE-ASME Transactions on Mechatronics, 2011, 16(2): 387-394
    105 Hua CC, Liu YJ, Yang YA. Image-based robotic control with unknown camera parameters and joint velocities. Robotica, 2015, 33(8): 1718-1730
    106 Mezouar Y, Chaumette F. Optimal camera trajectory with imagebased control. International Journal of Robotics Research, 2003, 22(10-11): 781-803
    107 Liang XW, Huang XH, Min W. Uncalibrated path planning in the image space for the fixed camera configuration. Acta Automatica Sinica, 2013, 39(6): 759-769
    108 Chesi G, Hung YS. Global path-planning for constrained and optimal visual servoing. IEEE Transactions on Robotics, 2007, 23(5): 1050-1060
    109 Chesi G, Prattichizzo D, Vicino A. Straight line path-planning in visual servoing. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 2007, 129(4): 541-543
    110 Deng LF, Janabi-Sharifi F, Wilson WJ. Hybrid motion control and planning strategies for visual servoing. IEEE Transactions on Industrial Electronics, 2005, 52(4): 1024-1040
    111 Mezouar Y, Chaumette F. Path planning for robust image-based control. IEEE Transactions on Robotics and Automation, 2002, 18(4): 534-549
    112 Allotta B, Fioravanti D. 3D motion planning for image-based visual servoing tasks. In: 2005 IEEE International Conference on Robotics and Automation (ICRA), 2005. 2173-2178
    113 Schramm F, Morel G. A calibration free analytical solution to image points path planning that ensures visibility. In: Proceedings of International Conference on the Robotics and Automation, 2004
    114 Schramm F, Micaelli A, Morel G. Calibration free path planning for visual servoing yielding straight line behaviour both in image and work space. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. 2688-2693
    115 Schramm F, Morel G. Ensuring visibility in calibration-free path planning for image-based visual servoing. IEEE Transactions on Robotics, 2006, 22(4): 848-854
    116 Schramm F, Ge ard F, Morel G, et al. Calibration free image point path planning simultaneously ensuring visibility and controlling camera path. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2007
    117 Park JS, Chung MJ. Path planning with uncalibrated stereo rig for image-based visual servoing under large pose discrepancy. IEEE Transactions on Robotics and Automation, 2003, 19(2): 250-258
    118 Fu QS, Zhang ZS, Shi JF, et al. Uncalibrated visual servoing with obstacle avoidance using SQP method. In: 2009 IEEE International Conference on Mechatronics and Automation, 2009. 2031-2036
    119 Silveira G. On intensity-based nonmetric visual servoing. IEEE Transactions on Robotics, 2014, 30(4): 1019-1026
    120 Bakthavatchalam M, Chaumette F, Tahri O. An improved modelling scheme for photometric moments with inclusion of spatial weights for visual servoing with partial appearance/disappearance. In: Proceedings of the IEEE Int Conf on Robotics and Automation, 2015
    121 Navarro-Alarcon D, Liu YH, Romero JG, et al. On the visual deformation servoing of compliant objects: Uncalibrated control methods and experiments. International Journal of Robotics Research, 2014, 33(11): 1462-1480
    122 Navarro-Alarcon D, Liu YH, Romero JG. Model-free visually servoed deformation control of elastic objects by robot manipulators. IEEE Transactions on Robotics, 2013, 29(6): 1457-1468
    123 Kumar S, Behera L. Implementation of a neural network based visual motor control algorithm for a 7 DOF redundant manipulator. In: 2008 IEEE International Joint Conference on Neural Networks, 2008. 1344-1351
    124 Su JB. Performance analysis of neural network-based uncalibrated hand-eye coordination. In: Advances in Neural Networks-ISNN 2005, 2005, 3498: 222-227
    125 李优新. 机器人无标定视觉伺服的多种智能控制方法研究. [博士论文]. 广州: 华南理工大学, 2009 (Li Youxin. Research on robot uncalibrated visual servoing system based on multi-intellegent control methods. [PhD Thesis]. Guangzhou: South China University of Technology, 2009 (in Chinese))
  • 期刊类型引用(39)

    1. 彭宗玉,黄开启,苏建华,王丽丽. 基于无模型自适应控制的视觉伺服. 计算机与现代化. 2024(01): 29-34 . 百度学术
    2. 魏博言,杜弘志,张瀛,任永杰,孙岩标. 基于平面点云配准与相对位姿控制的工业件装配方法. 激光与光电子学进展. 2024(04): 272-280 . 百度学术
    3. 苏克,闫人滏,谢文宇,崔倩雯,张梦茜,傅伯雄. 基于残差BP神经网络的机器人目标定位. 机械设计. 2024(08): 108-114 . 百度学术
    4. 刁世普,李兆澎,崔冠群. 基于局部视觉的特定工件移动机械臂动态抓取方法. 机电工程技术. 2023(04): 21-24 . 百度学术
    5. 陈高铭,骆研,黄碧漪,刘超,熊振华. 基于BP神经网络-模糊控制的机器人无标定视觉伺服技术. 科学技术与工程. 2023(26): 11282-11291 . 百度学术
    6. 柳宁,张嘉欢,李德平,王高. 基于切换控制的双相机视觉伺服方法. 计算机集成制造系统. 2023(10): 3258-3268 . 百度学术
    7. 仲训杲,仲训昱,彭侠夫,周承仙,徐敏. 未知雅可比建模的机器人视觉伺服自抗扰控制方法. 厦门大学学报(自然科学版). 2022(02): 231-238 . 百度学术
    8. 黄正军,王桂锋,施卢丹. 运用图像轨迹规划的无标定机器人视觉伺服控制. 机械科学与技术. 2022(03): 402-408 . 百度学术
    9. 方赟,李石朋,王娟. 分布式算法对工业机器人视觉伺服图像处理系统的影响. 机电工程技术. 2022(12): 122-126+225 . 百度学术
    10. 贾庆轩,段嘉琪,陈钢. 机器人在轨装配无标定视觉伺服对准方法. 航空学报. 2021(06): 628-637 . 百度学术
    11. 朱宏辉,王嘉豪,朱轶. 基于特征点密度峰值的视觉伺服目标选择方法. 计算机工程与设计. 2021(08): 2350-2357 . 百度学术
    12. 余晓兰,万云,陈靖照. 基于改进BP神经网络的食品分拣机器人视觉伺服控制方法. 食品与机械. 2021(08): 126-131+135 . 百度学术
    13. 蔡云,李美莲. 三维可移动无线传感器网络拓扑控制研究. 黄河科技学院学报. 2021(08): 25-31 . 百度学术
    14. 马树军,金铁铮,王英蕾,白昕晖. 一种无标定视觉伺服系统的快速跟踪策略. 东北大学学报(自然科学版). 2020(03): 355-360 . 百度学术
    15. 谢志坤. 机器人视觉伺服控制应用研究. 冶金管理. 2020(01): 101-102 . 百度学术
    16. 白蕾,蒋超,孟娇娇. 基于kalman滤波的机器人三维视觉定位. 电子测量技术. 2020(04): 1-4 . 百度学术
    17. 王海鹏,文艳,李建祥,周大洲,杨尚伟. 基于全自动跟拍的多功能车载巡检技术. 中国电力. 2020(05): 18-23 . 百度学术
    18. 彭叶予光,武东杰. 机器人无标定视觉伺服系统设计与实现. 电子技术应用. 2020(06): 77-81 . 百度学术
    19. 付丽霞,任玉洁,张勇,毛剑琳. 基于改进平滑A~*算法的移动机器人路径规划. 计算机仿真. 2020(08): 271-276 . 百度学术
    20. 张振国,任晓琳,高润泽,刘克平. 基于极限学习机的未校准图像视觉伺服控制. 吉林大学学报(信息科学版). 2020(06): 675-679 . 百度学术
    21. 岳晓峰,阳建峰,马国元,曹斌. 基于遗传优化RBF神经网络的机器人无标定视觉伺服控制. 计算机与数字工程. 2020(11): 2617-2621 . 百度学术
    22. 朱光耀. 基于无标定视觉伺服的全向移动机械臂跟踪控制. 电子测量技术. 2020(23): 23-29 . 百度学术
    23. 张辰,张华,冯兴华,杨厚易. 视觉引导技术在SCARA机器人装配任务中的应用. 传感器与微系统. 2019(02): 157-160 . 百度学术
    24. 王红旗,吴海波,董浩,茹淑慧. 工业机器人手眼视觉伺服控制系统设计. 传感器与微系统. 2019(04): 111-113 . 百度学术
    25. 杨建业,戚国庆,盛安冬. 基于视觉伺服的无人机自主着陆仿真系统设计. 电子设计工程. 2019(11): 9-14 . 百度学术
    26. 周小娟. 高压带电作业机器人视觉伺服控制系统. 自动化与仪器仪表. 2019(07): 95-97+101 . 百度学术
    27. 朱福康,丛明,刘毅,刘冬. 基于RGB-D图像的机器人无标定视觉定位. 计算机集成制造系统. 2019(08): 2007-2015 . 百度学术
    28. 王志江,薛坤喜,吴定勇,杨辉,申俊琦,刘杰,胡绳荪. 基于视觉传感的机器人焊缝纠偏控制系统. 机械工程学报. 2019(17): 48-55 . 百度学术
    29. 黄正军,周梅芳,杨杭旭. 基于Quaternion-EKF的未标定机器人视觉伺服系统位姿估算. 传感技术学报. 2019(09): 1352-1358 . 百度学术
    30. 梁喜凤,彭明,路杰,秦超. 基于自适应无迹卡尔曼滤波的采摘机械手视觉伺服控制方法. 农业工程学报. 2019(19): 230-237 . 百度学术
    31. 刘富,蔡文波,康冰. 基于视觉的四旋翼飞行器稳定飞行控制. 吉林大学学报(信息科学版). 2018(02): 184-189 . 百度学术
    32. 任秉银,魏坤,吴卓琦. 机械臂视觉伺服路径规划研究进展. 哈尔滨工业大学学报. 2018(01): 1-10 . 百度学术
    33. 葛一敏,袁海辉,甘春标. 基于步态切换的欠驱动双足机器人控制方法. 力学学报. 2018(04): 871-879 . 本站查看
    34. 杨厚易. 基于HALCON的机器人手眼标定精度分析与反演方法. 信息技术与网络安全. 2018(01): 97-100 . 百度学术
    35. 杨月全,秦瑞康,李福东,曹志强,季涛,张天平. 机器人视觉伺服控制研究进展与挑战. 郑州大学学报(理学版). 2018(02): 41-48 . 百度学术
    36. 章进强,张宪霞. 基于SPSA优化的Kalman滤波无标定视觉伺服. 系统仿真学报. 2018(12): 4754-4759 . 百度学术
    37. 王鹏,高雪霞,徐世许,高军伟,伍经纹. 基于视觉的并联机器人守门控制技术研究. 青岛大学学报(工程技术版). 2017(01): 58-62 . 百度学术
    38. 黄敏高. 基于单目视觉的工业机器人定位系统设计. 现代电子技术. 2017(18): 114-116+119 . 百度学术
    39. 李庆民. 机器人视觉伺服控制应用研究. 自动化应用. 2017(05): 124-125 . 百度学术

    其他类型引用(77)

计量
  • 文章访问数:  2283
  • HTML全文浏览量:  478
  • PDF下载量:  1791
  • 被引次数: 116
出版历程
  • 收稿日期:  2016-06-05
  • 修回日期:  2016-06-12
  • 刊出日期:  2016-07-17

目录

    /

    返回文章
    返回