1 谭民,王硕. 机器人技术研究进展制. 自动化学报,2013,39(7): 963-972 (Tan Min,Wang Shuo. Research progress on robotics. Acta Automatic Sinica, 2013,39(7):963-972 (in Chinese))
|
2 Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature, 2015, 521(7553): 467-475
|
3 Brochu P, Pei Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular Rapid Communications, 2010, 31(1): 10-36
|
4 Bhandari B, Lee GY, Ahn SH. A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. International Journal of Precision Engineering and Manufacturing, 2012, 13(1): 141-163
|
5 Satarkar NS, Biswal D, Hilt JZ. Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter, 2010, 6(11): 2364-2371
|
6 Mosadegh B, Polygerinos P, Keplinger C, et al. Pneumatic networks for soft robotics that actuate rapidly. Advanced Functional Materials, 2014, 24(15): 2163-2170
|
7 Jani JM, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Materials & Design, 2014, 56: 1078-1113
|
8 Cai Y, Bi S, Zheng L. Design and experiments of a robotic fish imitating cow-nosed ray. Journal of Bionic Engineering, 2010, 7(2): 120-126
|
9 Suzumori K, Endo S, Kanda T, et al. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot.//Robotics and Automation, 2007 IEEE International Conference on. IEEE, 2007: 4975-4980
|
10 Chen Z, Um TI, Bart-Smith H. A novel fabrication of ionic polymer– metal composite membrane actuator capable of 3-dimensional kinematic motions. Sensors and Actuators A: Physical, 2011, 168(1): 131-139
|
11 Kim HJ, Song SH, Ahn SH. A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Materials and Structures, 2012, 22(1): 014007
|
12 Song SH, Kim MS, Rodrigue H, et al. Turtle mimetic soft robot with two swimming gaits. Bioinspiration & Biomimetics, 2016, 11(3): 036010
|
13 Wang Z, Wang Y, Li J, et al. A micro biomimetic manta ray robot fish actuated by SMA //Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on. IEEE, 2009: 1809-1813
|
14 Hubbard JJ, Fleming M, Palmre V, et al. Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics. Oceanic Engineering, IEEE Journal, 2014, 39(3): 540-551
|
15 Marchese AD, Onal CD, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robotics, 2014, 1(1): 75-87
|
16 Wang Z, Hang G, Wang Y, et al. Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion. Smart Materials and Structures, 2008, 17(2): 025039
|
17 Shen Q, Wang T, Liang J, et al. Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer–metal composite. Smart Materials and Structures, 2013, 22(7): 075035
|
18 Villanueva A, Smith C, Priya S. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspiration & biomimetics, 2011, 6(3): 036004
|
19 Shi L, Guo S, Asaka K. A novel jellyfish-like biomimetic microrobot// Complex Medical Engineering (CME), 2010 IEEE/ICME International Conference on. IEEE, 2010: 277-281
|
20 Li H, Go G, Ko SY, et al. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Materials and Structures, 2016, 25(2): 027001
|
21 Najem J, Akle B, Sarles SA, et al. Design and development of a biomimetic jellyfish robot that features ionic polymer metal composites actuators //ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2011: 691-698
|
22 Seok S, Onal CD, Cho KJ, et al. Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. Mechatronics, IEEE/ASME Transactions on, 2013, 18(5): 1485-1497
|
23 Shepherd RF, Ilievski F, ChoiW, et al. Multigait soft robot. Proceedings of the National Academy of Sciences, 2011, 108(51): 20400-20403
|
24 Larson C, Peele B, Li S, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science, 2016,351(6277): 1071-1074
|
25 Menciassi A, Gorini S, Pernorio G, et al. A SMA actuated artificial earthworm //Proceedings. ICRA'04. 2004 IEEE International Conference on Robotics and Automation, IEEE, 2004, 4: 3282-3287
|
26 Jung K, Koo JC, Lee YK, et al. Artificial annelid robot driven by soft actuators. Bioinspiration & Biomimetics, 2007, 2(2): S42
|
27 Conn AT, Hinitt AD, Wang P. Soft segmented inchworm robot with dielectric elastomer muscles//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2014: 90562L-90562L-10
|
28 Lin HT, Leisk GG, Trimmer B. GoQBot: a caterpillar-inspired softbodied rolling robot. Bioinspiration & Biomimetics, 2011, 6(2): 026007
|
29 Nakamaru S, Maeda S, Hara Y, et al. Development of novel selfoscillating gel actuator for achievement of chemical robot// Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. IEEE, 2009: 4319-4324
|
30 Du Y, Xu M, Dong E, et al. A novel soft robot with three locomotion modes//Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on. IEEE, 2011: 98-103
|
31 Trimmer BA, Takesian AE, Sweet BM, et al. Caterpillar locomotion: a new model for soft-bodied climbing and burrowing robots//7th International Symposium on Technology and the Mine Problem. Monterey, CA: Mine Warfare Association, 2006, 1: 1-10
|
32 Li C, Xie Y, Huang X, et al. Novel dielectric elastomer structure of soft robot//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2015: 943021-943021-6
|
33 Morales D, Palleau E, Dickey MD, et al. Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter, 2014, 10(9): 1337-1348
|
34 Ilievski F, Mazzeo AD, Shepherd RF, et al. Soft robotics for chemists. Angewandte Chemie International Edition, 2011, 50(8): 1890-1895
|
35 Martinez RV, Branch JL, Fish CR, et al. Robotic tentacles with three-dimensional mobility based on flexible elastomers. Advanced Materials, 2013, 25(2): 205-212
|
36 Brown E, Rodenberg N, Amend J, et al. Universal robotic gripper based on the jamming of granular material. Proceedings of the National Academy of Sciences, 2010, 107(44): 18809-18814
|
37 Shintake J, Rosset S, Schubert B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Advanced Materials, 2016, 28(2): 231-238
|
38 Kofod G, Wirges W, Paajanen M, et al. Energy minimization for self-organized structure formation and actuation. Applied Physics Letters, 2007, 90(8): 081916
|
39 Shepherd RF, Stokes AA, Freake J, et al. Using explosions to power a soft robot. Angewandte Chemie International Edition, 2013, 52(10): 2892-2896
|
40 Bartlett NW, Tolley MT, Overvelde JTB, et al. A 3D-printed, functionally graded soft robot powered by combustion. Science, 2015, 349(6244): 161-165
|
41 Chemical robots squeeze into our future. http://www.nbcnews.com/ id/25479899/ns/technology and science-science/t/chemical-robotssqueeze-our-future/#.Vu4dGip951g
|
42 Calisti M, Arienti A, Giannaccini ME, et al. Study and fabrication of bioinspired octopus arm mockups tested on a multipurpose platform// Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on. IEEE, 2010: 461-466
|
43 Margheri L, Laschi C, Mazzolai B. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspiration & Biomimetics, 2012, 7(2): 025004
|
44 Mazzolai B, Margheri L, Cianchetti M, et al. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspiration & Biomimetics, 2012, 7(2): 025005
|
45 Martinez RV, Glavan AC, Keplinger C, et al. Soft actuators and robots that are resistant to mechanical damage. Advanced Functional Materials, 2014, 24(20): 3003-3010
|
46 Martinez RV, Fish CR, Chen X, et al. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Advanced Functional Materials, 2012, 22(7): 1376-1384.
|
47 Chang Y, Kim W. Aquatic ionic-polymer-metal-composite insectile robot with multi-DOF legs. Mechatronics, IEEE/ASME Transactions on, 2013, 18(2): 547-555
|
48 Pei Q, Rosenthal M, Stanford S, et al. Multiple-degrees-of-freedom electroelastomer roll actuators. Smart Materials and Structures, 2004, 13(5): N86
|
49 Firouzeh A, Ozmaeian M, Alasty A. An IPMC-made deformablering-like robot. Smart Materials and Structures, 2012, 21(6): 065011
|
50 Bunget G, Seelecke S. Actuator placement for a bio-inspired bonejoint system based on SMA//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2009: 72880L-72880L-12
|
51 Colorado J, Barrientos A, Rossi C, et al. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators. Bioinspiration & Biomimetics, 2012, 7(3): 036006
|
52 Hara F, Akazawa H, Kobayashi H. Realistic facial expressions by SMA driven face robot//Robot and Human Interactive Communication, 2001. Proceedings. 10th IEEE International Workshop on. IEEE, 2001: 504-511
|
53 Tadesse Y, Hong D, Priya S. Twelve degree of freedom baby humanoid head using shape memory alloy actuators. Journal of Mechanisms and Robotics, 2011, 3(1): 011008
|
54 Li T, Keplinger C, Baumgartner R, et al. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. Journal of the Mechanics and Physics of Solids, 2013, 61(2): 611-628
|
55 Li T, Qu S, Yang W. Electromechanical and dynamic analyses of tunable dielectric elastomer resonator. International Journal of Solids and Structures, 2012, 49(26): 3754-3761
|
56 Choi HR, Jung K, Ryew S, et al. Biomimetic soft actuator: design, modeling, control, and applications. Mechatronics, IEEE/ASME Transactions on, 2005, 10(5): 581-593
|
57 Zhao J, Niu J, McCoul D, et al. A rotary joint for a flapping wing actuated by dielectric elastomers: design and experiment. Meccanica, 2015, 50(11): 2815-2824
|
58 Branz F, Antonello A, Carron A, et al. Kinematics and control of redundant robotic arm based on dielectric elastomer actuators[ C]//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2015: 943023-943023-13
|
59 Kempaiah R, Nie Z. From nature to synthetic systems: shape transformation in soft materials. Journal of Materials Chemistry B, 2014, 2(17): 2357-2368
|
60 Lee H, Xia C, Fang NX. First jump of microgel; actuation speed enhancement by elastic instability. Soft Matter, 2010, 6(18): 4342-4345
|
61 Cho KJ, Koh JS, Kim S, et al. Review of manufacturing processes for soft biomimetic robots. International Journal of Precision Engineering and Manufacturing, 2009, 10(3): 171-181
|
62 Merz R, Prinz FB, Ramaswami K, et al. Shape deposition manufacturing. Engineering Design Research Center, Carnegie Mellon Univ., 1994
|
63 Cham JG, Bailey SA, Clark JE, et al. Fast and robust: Hexapedal robots via shape deposition manufacturing. The International Journal of Robotics Research, 2002, 21(10-11): 869-882
|
64 Zou Z, Li T, Qu S, et al. Active shape control and phase coexistence of dielectric elastomer membrane with patterned electrodes. Journal of Applied Mechanics, 2014, 81(3): 031016
|
65 Lotz P, Matysek M, Schlaak HF. Fabrication and application of miniaturized dielectric elastomer stack actuators. Mechatronics, IEEE/ASME Transactions on, 2011, 16(1): 58-66
|
66 Rosset S, Shea HR. Flexible and stretchable electrodes for dielectric elastomer actuators. Applied Physics A, 2013, 110(2): 281-307
|
67 Keplinger C, Sun JY, Foo CC, et al. habStretcle, transparent, ionic conductors. Science, 2013, 341(6149): 984-987
|
68 Xia Y, Whitesides GM. Soft lithography. Annual Review of Materials Science, 1998, 28(1): 153-184
|
69 Umedachi T, Trimmer BA. Design of a 3D-printed soft robot with posture and steering control//Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014: 2874-2879
|
70 Umedachi T, Vikas V, Trimmer BA. Highly deformable 3-d printed soft robot generating inching and crawling locomotions with variable friction legs//Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013: 4590-4595
|
71 Rossiter J, Walters P, Stoimenov B. Printing 3D dielectric elastomer actuators for soft robotics//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2009: 72870H-72870H-10
|
72 Carrico JD, Traeden NW, Aureli M, et al. Fused filament 3D printing of ionic polymer-metal composites (IPMCs). Smart Materials and Structures, 2015, 24(12): 125021
|
73 Peele BN, Wallin TJ, Zhao H, et al. 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspiration & Biomimetics, 2015, 10(5): 055003
|
74 Fang HB, Li SY, Wang KW, et al. Phase coordination and phasevelocity relationship in metameric robot locomotion. Bioinspiration & Biomimetics, 2015, 10(6): 066006
|
75 Fang HB, Li SY, Wang KW, et al. A comprehensive study on the locomotion characteristics of a metameric earthworm-like robot-Part A: Modeling and gait generation. Multibody System Dynamics, 2015, 34(4): 391-413
|
76 Fang HB, Li SY,Wang KW, et al. A comprehensive study on the locomotion characteristics of a metameric earthworm-like robot: Part B: Gait analysis and experiments. Multibody Dynamics System 2015, 35(2): 153-177
|