EI、Scopus 收录
中文核心期刊

软体机器人结构机理与驱动材料研究综述

李铁风, 李国瑞, 梁艺鸣, 程听雨, 杨栩旭, 黄志龙

李铁风, 李国瑞, 梁艺鸣, 程听雨, 杨栩旭, 黄志龙. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48(4): 756-766. DOI: 10.6052/0459-1879-16-159
引用本文: 李铁风, 李国瑞, 梁艺鸣, 程听雨, 杨栩旭, 黄志龙. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48(4): 756-766. DOI: 10.6052/0459-1879-16-159
Li Tiefeng, Li Guorui, Liang Yiming, Cheng Tingyu, Yang Xuxu, Huang Zhilong. REVIEW OF MATERIALS AND STRUCTURES IN SOFT ROBOTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766. DOI: 10.6052/0459-1879-16-159
Citation: Li Tiefeng, Li Guorui, Liang Yiming, Cheng Tingyu, Yang Xuxu, Huang Zhilong. REVIEW OF MATERIALS AND STRUCTURES IN SOFT ROBOTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766. DOI: 10.6052/0459-1879-16-159
李铁风, 李国瑞, 梁艺鸣, 程听雨, 杨栩旭, 黄志龙. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48(4): 756-766. CSTR: 32045.14.0459-1879-16-159
引用本文: 李铁风, 李国瑞, 梁艺鸣, 程听雨, 杨栩旭, 黄志龙. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48(4): 756-766. CSTR: 32045.14.0459-1879-16-159
Li Tiefeng, Li Guorui, Liang Yiming, Cheng Tingyu, Yang Xuxu, Huang Zhilong. REVIEW OF MATERIALS AND STRUCTURES IN SOFT ROBOTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766. CSTR: 32045.14.0459-1879-16-159
Citation: Li Tiefeng, Li Guorui, Liang Yiming, Cheng Tingyu, Yang Xuxu, Huang Zhilong. REVIEW OF MATERIALS AND STRUCTURES IN SOFT ROBOTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766. CSTR: 32045.14.0459-1879-16-159

软体机器人结构机理与驱动材料研究综述

基金项目: 国家自然科学基金资助项目(11572280, 11302190, 11321202).
详细信息
    通讯作者:

    李铁风,副教授,主要研究方向:软物质力学,软体智能材料与结构,软体机器人.E-mail:litiefeng@zju.edu.cn

  • 中图分类号: TP242

REVIEW OF MATERIALS AND STRUCTURES IN SOFT ROBOTICS

  • 摘要: 软体机器人是一类新型机器人,具有结构柔软度高,环境适应性好,亲和性强,功能多样等特点,有着十分广阔的研究和应用前景. 智能材料在软体机器人结构设计及实际应用中扮演了重要的角色,其特殊的驱动机制极大拓展了软体机器人的功能. 介绍了软体机器人的发展和研究现状,按其应用场合及功能总结了几种典型的软体机器人. 从仿生机理的角度,介绍了蠕虫、弯曲爬行虫、鱼类游动等几类仿生运动机理以及其相应的软体机器人. 还按不同驱动类型将软体机器人归纳为气动、形状记忆合金、离子交换聚合物金属复合材料、介电高弹体、响应水凝胶、化学燃烧驱动等类型. 介绍了软体机器人的制作方法与工艺,分析了目前软体机器人研究的主要挑战,提出对未来研究的展望.
    Abstract: Soft robot is a novel category of robotics. Possessing the characteristics of high flexibility, high environmental adaptability, high compatibility and multi-functionality, soft robots are quite promising in research and practical applications. The performances of soft robots are largely enhanced by the unique properties of smart materials, which play a crucial role in the design and application of soft robots. This paper summarizes existing soft robots by their actuating mechanisms and functions into typical categories as worm-like peristaltic moving, caterpillar-like bending actuation, fish-swimming soft robotics. Furthermore, by their actuating mechanisms, soft robots are summarized as air pressure powered, shape memory alloy (SMA), ionic polymer metal composite (IPMC), dielectric elastomer (DE), responsive hydrogel, chemical combustion powered robotics. This paper reviews and discusses the fabricating method, the current challenges and future prospects of soft robots.
  • 1 谭民,王硕. 机器人技术研究进展制. 自动化学报,2013,39(7): 963-972 (Tan Min,Wang Shuo. Research progress on robotics. Acta Automatic Sinica, 2013,39(7):963-972 (in Chinese))
    2 Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature, 2015, 521(7553): 467-475
    3 Brochu P, Pei Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular Rapid Communications, 2010, 31(1): 10-36
    4 Bhandari B, Lee GY, Ahn SH. A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. International Journal of Precision Engineering and Manufacturing, 2012, 13(1): 141-163
    5 Satarkar NS, Biswal D, Hilt JZ. Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter, 2010, 6(11): 2364-2371
    6 Mosadegh B, Polygerinos P, Keplinger C, et al. Pneumatic networks for soft robotics that actuate rapidly. Advanced Functional Materials, 2014, 24(15): 2163-2170
    7 Jani JM, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Materials & Design, 2014, 56: 1078-1113
    8 Cai Y, Bi S, Zheng L. Design and experiments of a robotic fish imitating cow-nosed ray. Journal of Bionic Engineering, 2010, 7(2): 120-126
    9 Suzumori K, Endo S, Kanda T, et al. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot.//Robotics and Automation, 2007 IEEE International Conference on. IEEE, 2007: 4975-4980
    10 Chen Z, Um TI, Bart-Smith H. A novel fabrication of ionic polymer– metal composite membrane actuator capable of 3-dimensional kinematic motions. Sensors and Actuators A: Physical, 2011, 168(1): 131-139
    11 Kim HJ, Song SH, Ahn SH. A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Materials and Structures, 2012, 22(1): 014007
    12 Song SH, Kim MS, Rodrigue H, et al. Turtle mimetic soft robot with two swimming gaits. Bioinspiration & Biomimetics, 2016, 11(3): 036010
    13 Wang Z, Wang Y, Li J, et al. A micro biomimetic manta ray robot fish actuated by SMA //Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on. IEEE, 2009: 1809-1813
    14 Hubbard JJ, Fleming M, Palmre V, et al. Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics. Oceanic Engineering, IEEE Journal, 2014, 39(3): 540-551
    15 Marchese AD, Onal CD, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robotics, 2014, 1(1): 75-87
    16 Wang Z, Hang G, Wang Y, et al. Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion. Smart Materials and Structures, 2008, 17(2): 025039
    17 Shen Q, Wang T, Liang J, et al. Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer–metal composite. Smart Materials and Structures, 2013, 22(7): 075035
    18 Villanueva A, Smith C, Priya S. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspiration & biomimetics, 2011, 6(3): 036004
    19 Shi L, Guo S, Asaka K. A novel jellyfish-like biomimetic microrobot// Complex Medical Engineering (CME), 2010 IEEE/ICME International Conference on. IEEE, 2010: 277-281
    20 Li H, Go G, Ko SY, et al. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Materials and Structures, 2016, 25(2): 027001
    21 Najem J, Akle B, Sarles SA, et al. Design and development of a biomimetic jellyfish robot that features ionic polymer metal composites actuators //ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2011: 691-698
    22 Seok S, Onal CD, Cho KJ, et al. Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. Mechatronics, IEEE/ASME Transactions on, 2013, 18(5): 1485-1497
    23 Shepherd RF, Ilievski F, ChoiW, et al. Multigait soft robot. Proceedings of the National Academy of Sciences, 2011, 108(51): 20400-20403
    24 Larson C, Peele B, Li S, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science, 2016,351(6277): 1071-1074
    25 Menciassi A, Gorini S, Pernorio G, et al. A SMA actuated artificial earthworm //Proceedings. ICRA'04. 2004 IEEE International Conference on Robotics and Automation, IEEE, 2004, 4: 3282-3287
    26 Jung K, Koo JC, Lee YK, et al. Artificial annelid robot driven by soft actuators. Bioinspiration & Biomimetics, 2007, 2(2): S42
    27 Conn AT, Hinitt AD, Wang P. Soft segmented inchworm robot with dielectric elastomer muscles//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2014: 90562L-90562L-10
    28 Lin HT, Leisk GG, Trimmer B. GoQBot: a caterpillar-inspired softbodied rolling robot. Bioinspiration & Biomimetics, 2011, 6(2): 026007
    29 Nakamaru S, Maeda S, Hara Y, et al. Development of novel selfoscillating gel actuator for achievement of chemical robot// Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. IEEE, 2009: 4319-4324
    30 Du Y, Xu M, Dong E, et al. A novel soft robot with three locomotion modes//Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on. IEEE, 2011: 98-103
    31 Trimmer BA, Takesian AE, Sweet BM, et al. Caterpillar locomotion: a new model for soft-bodied climbing and burrowing robots//7th International Symposium on Technology and the Mine Problem. Monterey, CA: Mine Warfare Association, 2006, 1: 1-10
    32 Li C, Xie Y, Huang X, et al. Novel dielectric elastomer structure of soft robot//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2015: 943021-943021-6
    33 Morales D, Palleau E, Dickey MD, et al. Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter, 2014, 10(9): 1337-1348
    34 Ilievski F, Mazzeo AD, Shepherd RF, et al. Soft robotics for chemists. Angewandte Chemie International Edition, 2011, 50(8): 1890-1895
    35 Martinez RV, Branch JL, Fish CR, et al. Robotic tentacles with three-dimensional mobility based on flexible elastomers. Advanced Materials, 2013, 25(2): 205-212
    36 Brown E, Rodenberg N, Amend J, et al. Universal robotic gripper based on the jamming of granular material. Proceedings of the National Academy of Sciences, 2010, 107(44): 18809-18814
    37 Shintake J, Rosset S, Schubert B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Advanced Materials, 2016, 28(2): 231-238
    38 Kofod G, Wirges W, Paajanen M, et al. Energy minimization for self-organized structure formation and actuation. Applied Physics Letters, 2007, 90(8): 081916
    39 Shepherd RF, Stokes AA, Freake J, et al. Using explosions to power a soft robot. Angewandte Chemie International Edition, 2013, 52(10): 2892-2896
    40 Bartlett NW, Tolley MT, Overvelde JTB, et al. A 3D-printed, functionally graded soft robot powered by combustion. Science, 2015, 349(6244): 161-165
    41 Chemical robots squeeze into our future. http://www.nbcnews.com/ id/25479899/ns/technology and science-science/t/chemical-robotssqueeze-our-future/#.Vu4dGip951g
    42 Calisti M, Arienti A, Giannaccini ME, et al. Study and fabrication of bioinspired octopus arm mockups tested on a multipurpose platform// Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on. IEEE, 2010: 461-466
    43 Margheri L, Laschi C, Mazzolai B. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspiration & Biomimetics, 2012, 7(2): 025004
    44 Mazzolai B, Margheri L, Cianchetti M, et al. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspiration & Biomimetics, 2012, 7(2): 025005
    45 Martinez RV, Glavan AC, Keplinger C, et al. Soft actuators and robots that are resistant to mechanical damage. Advanced Functional Materials, 2014, 24(20): 3003-3010
    46 Martinez RV, Fish CR, Chen X, et al. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Advanced Functional Materials, 2012, 22(7): 1376-1384.
    47 Chang Y, Kim W. Aquatic ionic-polymer-metal-composite insectile robot with multi-DOF legs. Mechatronics, IEEE/ASME Transactions on, 2013, 18(2): 547-555
    48 Pei Q, Rosenthal M, Stanford S, et al. Multiple-degrees-of-freedom electroelastomer roll actuators. Smart Materials and Structures, 2004, 13(5): N86
    49 Firouzeh A, Ozmaeian M, Alasty A. An IPMC-made deformablering-like robot. Smart Materials and Structures, 2012, 21(6): 065011
    50 Bunget G, Seelecke S. Actuator placement for a bio-inspired bonejoint system based on SMA//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2009: 72880L-72880L-12
    51 Colorado J, Barrientos A, Rossi C, et al. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators. Bioinspiration & Biomimetics, 2012, 7(3): 036006
    52 Hara F, Akazawa H, Kobayashi H. Realistic facial expressions by SMA driven face robot//Robot and Human Interactive Communication, 2001. Proceedings. 10th IEEE International Workshop on. IEEE, 2001: 504-511
    53 Tadesse Y, Hong D, Priya S. Twelve degree of freedom baby humanoid head using shape memory alloy actuators. Journal of Mechanisms and Robotics, 2011, 3(1): 011008
    54 Li T, Keplinger C, Baumgartner R, et al. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. Journal of the Mechanics and Physics of Solids, 2013, 61(2): 611-628
    55 Li T, Qu S, Yang W. Electromechanical and dynamic analyses of tunable dielectric elastomer resonator. International Journal of Solids and Structures, 2012, 49(26): 3754-3761
    56 Choi HR, Jung K, Ryew S, et al. Biomimetic soft actuator: design, modeling, control, and applications. Mechatronics, IEEE/ASME Transactions on, 2005, 10(5): 581-593
    57 Zhao J, Niu J, McCoul D, et al. A rotary joint for a flapping wing actuated by dielectric elastomers: design and experiment. Meccanica, 2015, 50(11): 2815-2824
    58 Branz F, Antonello A, Carron A, et al. Kinematics and control of redundant robotic arm based on dielectric elastomer actuators[ C]//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2015: 943023-943023-13
    59 Kempaiah R, Nie Z. From nature to synthetic systems: shape transformation in soft materials. Journal of Materials Chemistry B, 2014, 2(17): 2357-2368
    60 Lee H, Xia C, Fang NX. First jump of microgel; actuation speed enhancement by elastic instability. Soft Matter, 2010, 6(18): 4342-4345
    61 Cho KJ, Koh JS, Kim S, et al. Review of manufacturing processes for soft biomimetic robots. International Journal of Precision Engineering and Manufacturing, 2009, 10(3): 171-181
    62 Merz R, Prinz FB, Ramaswami K, et al. Shape deposition manufacturing. Engineering Design Research Center, Carnegie Mellon Univ., 1994
    63 Cham JG, Bailey SA, Clark JE, et al. Fast and robust: Hexapedal robots via shape deposition manufacturing. The International Journal of Robotics Research, 2002, 21(10-11): 869-882
    64 Zou Z, Li T, Qu S, et al. Active shape control and phase coexistence of dielectric elastomer membrane with patterned electrodes. Journal of Applied Mechanics, 2014, 81(3): 031016
    65 Lotz P, Matysek M, Schlaak HF. Fabrication and application of miniaturized dielectric elastomer stack actuators. Mechatronics, IEEE/ASME Transactions on, 2011, 16(1): 58-66
    66 Rosset S, Shea HR. Flexible and stretchable electrodes for dielectric elastomer actuators. Applied Physics A, 2013, 110(2): 281-307
    67 Keplinger C, Sun JY, Foo CC, et al. habStretcle, transparent, ionic conductors. Science, 2013, 341(6149): 984-987
    68 Xia Y, Whitesides GM. Soft lithography. Annual Review of Materials Science, 1998, 28(1): 153-184
    69 Umedachi T, Trimmer BA. Design of a 3D-printed soft robot with posture and steering control//Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014: 2874-2879
    70 Umedachi T, Vikas V, Trimmer BA. Highly deformable 3-d printed soft robot generating inching and crawling locomotions with variable friction legs//Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013: 4590-4595
    71 Rossiter J, Walters P, Stoimenov B. Printing 3D dielectric elastomer actuators for soft robotics//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2009: 72870H-72870H-10
    72 Carrico JD, Traeden NW, Aureli M, et al. Fused filament 3D printing of ionic polymer-metal composites (IPMCs). Smart Materials and Structures, 2015, 24(12): 125021
    73 Peele BN, Wallin TJ, Zhao H, et al. 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspiration & Biomimetics, 2015, 10(5): 055003
    74 Fang HB, Li SY, Wang KW, et al. Phase coordination and phasevelocity relationship in metameric robot locomotion. Bioinspiration & Biomimetics, 2015, 10(6): 066006
    75 Fang HB, Li SY, Wang KW, et al. A comprehensive study on the locomotion characteristics of a metameric earthworm-like robot-Part A: Modeling and gait generation. Multibody System Dynamics, 2015, 34(4): 391-413
    76 Fang HB, Li SY,Wang KW, et al. A comprehensive study on the locomotion characteristics of a metameric earthworm-like robot: Part B: Gait analysis and experiments. Multibody Dynamics System 2015, 35(2): 153-177
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-05
  • 修回日期:  2016-06-12
  • 刊出日期:  2016-07-17

目录

    /

    返回文章
    返回