EI、Scopus 收录
中文核心期刊

基于单个压电振子的湍流边界层主动控制

张浩, 郑小波, 姜楠

张浩, 郑小波, 姜楠. 基于单个压电振子的湍流边界层主动控制[J]. 力学学报, 2016, 48(3): 536-544. DOI: 10.6052/0459-1879-15-020
引用本文: 张浩, 郑小波, 姜楠. 基于单个压电振子的湍流边界层主动控制[J]. 力学学报, 2016, 48(3): 536-544. DOI: 10.6052/0459-1879-15-020
Zhang Hao, Zheng Xiaobo, Jiang Nan. ACTIVE CONTROL OF TURBULENT BOUNDARY LAYER BASED ON A SINGLE PIEZOELECTRIC OSCILLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 536-544. DOI: 10.6052/0459-1879-15-020
Citation: Zhang Hao, Zheng Xiaobo, Jiang Nan. ACTIVE CONTROL OF TURBULENT BOUNDARY LAYER BASED ON A SINGLE PIEZOELECTRIC OSCILLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 536-544. DOI: 10.6052/0459-1879-15-020
张浩, 郑小波, 姜楠. 基于单个压电振子的湍流边界层主动控制[J]. 力学学报, 2016, 48(3): 536-544. CSTR: 32045.14.0459-1879-15-020
引用本文: 张浩, 郑小波, 姜楠. 基于单个压电振子的湍流边界层主动控制[J]. 力学学报, 2016, 48(3): 536-544. CSTR: 32045.14.0459-1879-15-020
Zhang Hao, Zheng Xiaobo, Jiang Nan. ACTIVE CONTROL OF TURBULENT BOUNDARY LAYER BASED ON A SINGLE PIEZOELECTRIC OSCILLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 536-544. CSTR: 32045.14.0459-1879-15-020
Citation: Zhang Hao, Zheng Xiaobo, Jiang Nan. ACTIVE CONTROL OF TURBULENT BOUNDARY LAYER BASED ON A SINGLE PIEZOELECTRIC OSCILLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 536-544. CSTR: 32045.14.0459-1879-15-020

基于单个压电振子的湍流边界层主动控制

基金项目: 国家自然科学基金(11272233,11332006,11411130150)和国家重点基础研究发展计划(973)课题(2012CB720101,2012CB720103)资助项目.
详细信息
    通讯作者:

    姜楠,教授,主要研究方向:湍流,实验流体力学.E-mail:nanj@tju.edu.cn

  • 中图分类号: O357.5

ACTIVE CONTROL OF TURBULENT BOUNDARY LAYER BASED ON A SINGLE PIEZOELECTRIC OSCILLATOR

  • 摘要: 利用安装在壁面上的单个压电振子周期振荡,采用开环主动控制方案,实现了对平板湍流边界层相干结构猝发的主动控制和壁湍流减阻.根据不同的输入电压幅值和频率,完成了10种工况的实验.在压电振子下游2mm处,用热线风速仪和迷你热线单丝探针,精细测量湍流边界层不同法向位置瞬时流向速度信号的时间序列,分析了在Reø=2183压电振子振动对湍流边界层平均速度剖面、减阻率和相干结构猝发过程的影响.实验结果表明,施加控制的工况使平均速度剖面对数律层上移,产生减阻效果;压电振子振幅越大,减阻率越高,减阻效果越明显;通过对施加控制前后流向瞬时速度的多尺度湍涡结构脉动动能的尺度分析,当压电振子振动频率与壁湍流能量最大尺度的猝发频率相近时,减阻率达到最大,为25%,说明控制壁湍流能量最大尺度相干结构的猝发是实现壁湍流减阻的关键;通过对比相干结构猝发的流向速度分量条件相位平均波形,发现施加控制的工况中相干结构猝发流向速度分量的波形幅值明显降低,且流向速度在扫掠后期高速阶段迅速衰减,缩短了高速流体的下扫过程,说明压电振子的振动能抑制相干结构的高速流体下扫过程,减弱高速流体与壁面的强烈剪切过程,并使近壁区域相干结构的振幅显著减弱,迁移速度加快,从而减小壁面摩擦阻力.
    Abstract: Open-loop active control of a turbulent boundary layer has been achieved in skin-friction reduction and suppression of coherent structure bursting process by means of periodic oscillating of a piezoelectric oscillator embedded on the surface of a flat plate wall. Ten experimental cases were carried out under variable input voltage amplitudes and frequencies. At 2 mm downstream of the piezoelectric oscillator, the simultaneous time series of streamwise velocity component at di erent wall-normal positions in the turbulent boundary layer were finely measured by hot-wire anemometer and a mini single-sensor probe. The e ects of piezoelectric oscillation on the mean velocity profile, drag-reduction rate and conditional phase-average waveform of coherent structure burst were investigated at Reθ=2 183. An upward shift in the log-law of mean velocity profile is observed, which indicates the reduction of skin-friction. With the larger amplitude of vibration, the higher drag reduction rate is achieved. Furthermore, a maximum rate of 25% can be reached when the vibration frequency is very close to the burst frequency of maximum-energy scale, which indicates that the manipulation of energetic-scale coherent structure burst is the key of wall-bounded turbulence drag reduction. In addition, by comparing the conditional phase-average waveforms of manipulated and unmanipulated cases, the waveform for manipulated conditions has more decreased amplitude with its wave crest damping rapidly in the later stage of high-speed sweep event and the sweep process of high-speed fluids are shorten. The vibration of piezoelectric oscillator can suppress the coherent structure sweep process of high-speed fluids, weaken the shear process of the high-speed fluids with the surface of the wall, bate the amplitude of coherent structure burst in the near-wall region, and as a result, reduce the skin-friction drag.
  • 1 Robinson SK. Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 1991, 23: 601-639
    2 许春晓. 壁湍流相干结构和减阻控制机理. 力学进展, 2015, 45:111-139 (Xu Chunxiao. Coherent structures and drag-reduction mechanism in wall turbulence. Advances in Mechanics, 2015, 45:111-139 (in Chinese))
    3 Zhang ZS, Cui GX, Xu CX. Modern turbulence and new challenges. Acta Mechanica Sinica, 2002, 18(4): 309-327
    4 Kravchenko AG, Choi H, Moin P. On the generation of near-wall streamwise vorticesto wall skin friction in turbulent boundary layers. Phys Fluids, 1993, A5: 3307-3309
    5葛铭纬, 许春晓, 黄伟希等. 基于壁面主动变形的湍流减阻控制研究. 力学学报, 2012, 44 (4): 653-663 (Ge Mingwei, Xu Chunxiao, Huang Weixi, et al. Drag reduction control based on active wall deformation. Chinese Journal of Theoretical and Applied Mechanics,2012, 44 (4): 653-663 (in Chinese))
    6 Deng BQ, Xu CX. Influence of active control on STG-based generation of streamwise vortices in near-wall turbulence. J Fluid Mech,2012, 710: 234-259
    7 黄伟希, 许春晓, 崔桂香等. 壁面展向周期振动的槽道湍流减阻机理的研究. 力学学报, 2004, 36(1): 24-30 (HuangWeixi, Xu Chunxiao, Cui Guixiang, et al. Mechanism of drag reduction by spanwise wall oscillation in turbulent channel flow. Acta Mechanica Sinica,2004, 36(1): 24-30 (in Chinese))
    8 杨歌, 许春晓, 崔桂香. 槽道湍流减阻次优控制方案研究. 力学学报, 2010, 42(5): 818-829 (Yang Ge, Xu Chunxiao, Cui Guixiang. Study on suboptimal control schemes for skin-friction reduction in turbulent channel flow. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 818-829 (in Chinese))
    9 罗世东, 许春晓, 崔桂香. 圆管湍流减阻电磁力控制的直接数值模拟. 力学学报, 2007, 39(3): 311-319 (Luo Shidong, Xu Chunxiao, Cui Guixiang. Direct Numerical simulation of turbulent pipe flow controlled by MHD for drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 311-319 (in Chinese))
    10 Kral LD. Active flow control technology. ASME Fluids Engineering Division Newsletter, 1999: 1-3
    11 Kim J. Control of turbulent boundary layers. Phys Fluids, 2003,15(15): 1093-1105
    12 Karniadakis GE, Choi KS. Mechanisms on transverse motions in turbulent wall flows. Annual Review of Fluid Mechanics, 2003,35(1): 45-62
    13 Gad-El-Hak M. Flow Control: Passive, Active, and Reactive Flow Management. Cambridge: Cambridge University Press, 2000
    14 Kasagi N, Suzuki Y, Fukagata K. Microelectromechanical systems- based feedback control of turbulence for skin friction reduction. Annual Review of Fluid Mechanics, 2009, 41(41): 231-251
    15 Jung WJ, Mangiavachi N, Akhavan R. Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys Fluids, 1992, 4 (8): 1605-1607
    16 Choi KS, Debisschop JR, Clayton BR. Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J , 1998, 36(7):1157-1163
    17 Choi H, Moin P, Kim J. Active turbulence control for drag reduction in wall-bounded flows. J Fluid Mech, 1994, 262: 75-110
    18 Berger TW, Kim J, Lee C, et al. Turbulent boundary layer control utilizing the Lorentz force. Phys. Fluids, 2000, 12(3): 631-649
    19 Park SH, Lee I, Sung HJ. E ect of local forcing on a turbulent boundary layer. Exp in Fluids, 2001, 31: 384-393
    20 Du Y, Karniadakis GE. Suppressing wall turbulence by means of a transverse traveling wave. Science, 2000, 288(5469): 1230-1234
    21 Du Y, Symeonidis V, Karniadakis GE. Drag reduction in wallbounded turbulence via a transverse travelling wave. J Fluid Mech,2002, 457(5):1-34
    22 Grosjean C, Lee GB, Hong W, et al. Micro balloon actuators for aerodynamic control. In: Proceedings of the 11th MEMS Workshop, Heidelberg, 25-29 January, 1998: 166-171
    23 Segawa T, Kawaguchi Y, Kikushima Y, et al. Active control of streak structures in wall turbulence using an actuator array producing inclined wavy disturbances. Journal of Turbulence, 2002, 3(1): 1-15
    24 Itoh M, Tamano S, Yokota K, et al. Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion. Journal of Turbulence, 2006, 7(27): 1-17
    25 Rathnasingham R. System identification and active control of a turbulent boundary layer. [PhD Thesis]. Boston: Massachusetts Institute of Technology, 1997: 64-69
    26 Cattafesta LN, Garg S, Shukla D. Development of piezoelectric actuators for active flow control. American Institute of Aeronautics and Astronautics, 2001, (8): 1562-1568
    27 Cattafesta LN, Sheplak M. Actuators for active flow control. Annual Review of Fluid Mechanics, 2011, 43(5): 247-272
    28 Bandyopadhyay PR. Review: mean flow in turbulent boundary layers disturbed to alter skin friction. Journal of Fluids Engineering,1986, 108(2): 127-140
    29 姜楠, 王振东, 舒玮. 子波分析辨识壁湍流猝发事件的能量最大准则. 力学学报, 1997, 29 (4): 406-411 (Jiang Nan, Wang Zhendong, Shu Wei. Maximum energy criterion for identifying burst events in wall turbulence using wavelet analysis. Acta Mechanica Sinica,1997, 29 (4): 406-411 (in Chinese))
    30 舒玮, 姜楠. 湍流中涡的尺度分析, 空气动力学报, 2000, 18(增):89-95 (Shu Wei, Jiang Nan. Eddy scale analysis in turbulence. Acta Aerodynamica Sinica, 2000, 18(S): 89-95 (in Chinese))
    31 Jiang N, Zhang J. Detecting multi-scale coherent eddy structures and intermittency in turbulent boundary layer by wavelet analysis. Chinese Physics Letter, 2005, 22(8): 1968-1971
    32 Jiang N, LiuW, Liu JH, et al. Phase-averaged waveform of Reynolds stress in wall turbulence during the burst events of coherent structures. Science in China, 2008, 51(7): 857-866
  • 期刊类型引用(3)

    1. 高赛芃,白建侠,程肖岐,田海平,姜楠. 人工合成微射流周期吹吸扰动控制壁湍流相干结构的实验研究. 实验力学. 2023(06): 723-731 . 百度学术
    2. 王帅杰,崔晓通,白建侠,唐湛棋,姜楠. 减阻工况下壁面周期扰动对湍流边界层多尺度的影响. 力学学报. 2019(03): 767-774 . 本站查看
    3. 白建侠,姜楠,唐湛棋,崔晓通. 双压电振子异步振动主动调制湍流边界层流向涡减阻. 航空动力学报. 2019(12): 2539-2548 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  1326
  • HTML全文浏览量:  102
  • PDF下载量:  692
  • 被引次数: 13
出版历程
  • 收稿日期:  2015-01-13
  • 修回日期:  2016-02-23
  • 刊出日期:  2016-05-17

目录

    /

    返回文章
    返回