EI、Scopus 收录
中文核心期刊

基于辛理论的载流碳纳米管能带分析

李渊, 邓子辰, 叶学华, 王艳

李渊, 邓子辰, 叶学华, 王艳. 基于辛理论的载流碳纳米管能带分析[J]. 力学学报, 2016, 48(1): 135-139. DOI: 10.6052/0459-1879-15-164
引用本文: 李渊, 邓子辰, 叶学华, 王艳. 基于辛理论的载流碳纳米管能带分析[J]. 力学学报, 2016, 48(1): 135-139. DOI: 10.6052/0459-1879-15-164
Li Yuan, Deng Zichen, Ye Xuehua, Wang Yan. ANALYSING THEWAVE SCATTERING IN SINGLE-WALLED CARBON NANOTUBE CONVEYING FLUID BASED ON THE SYMPLECTIC THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 135-139. DOI: 10.6052/0459-1879-15-164
Citation: Li Yuan, Deng Zichen, Ye Xuehua, Wang Yan. ANALYSING THEWAVE SCATTERING IN SINGLE-WALLED CARBON NANOTUBE CONVEYING FLUID BASED ON THE SYMPLECTIC THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 135-139. DOI: 10.6052/0459-1879-15-164
李渊, 邓子辰, 叶学华, 王艳. 基于辛理论的载流碳纳米管能带分析[J]. 力学学报, 2016, 48(1): 135-139. CSTR: 32045.14.0459-1879-15-164
引用本文: 李渊, 邓子辰, 叶学华, 王艳. 基于辛理论的载流碳纳米管能带分析[J]. 力学学报, 2016, 48(1): 135-139. CSTR: 32045.14.0459-1879-15-164
Li Yuan, Deng Zichen, Ye Xuehua, Wang Yan. ANALYSING THEWAVE SCATTERING IN SINGLE-WALLED CARBON NANOTUBE CONVEYING FLUID BASED ON THE SYMPLECTIC THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 135-139. CSTR: 32045.14.0459-1879-15-164
Citation: Li Yuan, Deng Zichen, Ye Xuehua, Wang Yan. ANALYSING THEWAVE SCATTERING IN SINGLE-WALLED CARBON NANOTUBE CONVEYING FLUID BASED ON THE SYMPLECTIC THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 135-139. CSTR: 32045.14.0459-1879-15-164

基于辛理论的载流碳纳米管能带分析

基金项目: 国家自然科学基金(11372252),高校博士点基金(20126102110023),中央高校基本科研业务费专项资金(310201401JCQ01001)资助项目.
详细信息
    通讯作者:

    邓子辰,教授,主要研究方向:物理波在材料和结构中的传播.E-mail:dweifan@nwpu.edu.cn

  • 中图分类号: O302

ANALYSING THEWAVE SCATTERING IN SINGLE-WALLED CARBON NANOTUBE CONVEYING FLUID BASED ON THE SYMPLECTIC THEORY

  • 摘要: 基于连续介质力学理论和辛弹性理论,将载流碳纳米管等效为铁木辛柯梁,采用哈密顿变分原理建立了载流碳纳米管的振动控制方程;引入对偶变量将振动控制方程从拉格朗日体系导入到哈密顿体系下;通过波传播方法分析了载流碳纳米管的能带结构;研究了流体密度、流速对载流碳纳米管能带结构的影响;同时计算了载流碳纳米管的散射矩阵. 研究发现:管内流速以及流体密度对剪切频率和弯曲频率有着非常重要的影响. 研究结果表明:载流碳纳米管的剪切频率和弯曲频率因流体的加入而减小,并随流速及流体密度的增大而减小;通过对数值结果的分析发现:载流碳纳米管由于管内流体、流速以及流体密度的作用,会使得载流碳纳米管变的更“软”. 其中,哈密顿体系下所得出的载流碳纳米管弯曲频率随管内流体密度的增加而变小,有别于在拉格朗日体系下非局部梁理论所得的结论. 同时,数值结果表明散射矩阵是酉矩阵,辛体系下的入射波功率流与反射波功率流相等,即功率流守恒,体现了辛弹性力学理论的优越性.
    Abstract: Based on tcontinuum mechanics theory and the symplectic theory, the single-walled carbon nanotube (SWCNT) is modelled as a Timoshenko beam. The dynamics equations of fluid-conveying SWCNT are derived from Hamilton's principle. By introducing the symplectic variable into the mechanics system, the governing equation of fluid-conveying SWCNT is transformed from Lagrange system into Hamilton system, then the governing equation is employed to analyse the energy band structure of the SWCNT and the wave scattering in the beam. Moreover, the scattering matrix of the nanotube is calculated by symplectic methodology. The influences of the fluid density and velocity to SWCNT's band structure are also analysed. The results show that the shear and flexural frequencies of SWCNT are greater than those of fluid-conveying SWCNT. The analyses indicate that the shear and flexural frequencies of fluid-conveying SWCNT decrease with the fluid velocity and density increasing, because the e ect of the fluid inside makes the nanotube softer. Meanwhile, it is also found that the scattering matrix is unitary matrix, pointing the power flow of the incident wave is equal to that of the reflected wave, indicating the power flow of Hamilton system is conserved. Furthermore, the results show the superiority of the symplectic elasticity theory.
  • 1 白春礼. 纳米科技及其发展前景. 科学通报, 2001, (02): 89-92 (Bai Chunli. Nano science and technology and its development prospect. Chinese Science Bulletin, 2001, (02): 89-92 (in Chinese))
    2 Craighead HG. Nanoelectromechanical systems. Science, 2000,290(5496): 1532-1535
    3 郑泉水, 徐志平, 王立峰. 碳纳米管的力学. 力学进展, 2004, 34(1):97-138 (Zheng Quanshui, Xu Zhiping, Wang Lifeng. Mechanics of carbon nanotubes. Advances in Mechanics, 2004, 34(1): 97-138 (in Chinese))
    4 Liu JZ, Zheng Q, Jiang Q. E ect of a rippling mode on resonances of carbon nanotubes. Physical Review Letters, 2001, 86(21): 4843-4846
    5 Zheng Q, Jiang Q. Multiwalled carbon nanotubes as gigahertz oscillators. Physical Review Letters, 2002, 88(4): 045503
    6 Guo W, Guo Y, Gao H, et al. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. Physical Review Letters,2003, 91(12): 125501
    7 Wang L. Flutter instability of supported pipes conveying fluid subjected to distributed follower forces. Acta Mechanica Solida Sinica,2012, 25(1): 46-52
    8 Xia W, Wang L. Vibration characteristics of fluid-conveying carbon nanotubes with curved longitudinal shape. Computational Materials Science, 2010, 49(1): 99-103
    9 Wang L, Hu H. Flexural wave propagation in single-walled carbon nanotubes. Physical Review B, 2005, 71(19): 195412
    10 Wang L, Ni Q, Li M, et al. The thermal e ect on vibration and instability of carbon nanotubes conveying fluid. Physica E: Lowdimensional Systems and Nanostructures, 2008, 40(10): 3179-3182
    11 王立峰. 一维纳米结构的若干力学问题. [博士论文]. 南京:南京 航空航天大学, 2005 (Wang Lifeng. On some mechanics problems in one dimensional nanostructures. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005 (in Chinese))
    12 Gibson RF, Ayorinde EO, Wen YF. Vibrations of carbon nanotubes and their composites: A review. Composites Science and Technology,2007, 67(1): 1-28
    13 Zhang Y, Liu G, Han X. Transverse vibrations of double-walled carbon nanotubes under compressive axial load. Physics Letters A,2005, 340(1-4): 258-66
    14 Yoon J, Ru CQ, Mioduchowski A. Timoshenko-beam e ects on transverse wave propagation in carbon nanotubes. Composites Part B: Engineering, 2004, 35(2): 87-93
    15 Yoon J, Ru CQ, Mioduchowski A. Vibration and instability of carbon nanotubes conveying fluid. Composites Science and Technology,2005, 65(9): 1326-1336
    16 Wang Q, Varadan VK. Wave characteristics of carbon nanotubes. International Journal of Solids and Structures, 2006, 43(2): 254-65
    17 Chang TP. Thermal-mechanical vibration and instability of a fluid conveying single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Applied Mathematical Modelling, 2012, 36(5): 1964-1973
    18 Soltani P, Farshidianfar A. Periodic solution for nonlinear vibration of a fluid-conveying carbon nanotube, based on the nonlocal continuum theory by energy balance method. Applied Mathematical Modelling, 2012, 36(8): 3712-3724
    19 Soltani P, Kassaei A, Taherian M, et al. Vibration of wavy singlewalled carbon nanotubes based on nonlocal Euler Bernoulli and Timoshenko models. International Journal of Advanced Structural Engineering, 2012, 4(1): 1-10
    20 Kiani K. Transverse wave propagation in elastically confined singlewalled carbon nanotubes subjected to longitudinal magnetic fields using nonlocal elasticity models. Physica E: Low-dimensional Systems and Nanostructures, 2012, 45: 86-96
    21 Li BH, Gao HS, Liu YS, et al. Free vibration analysis of micropipe conveying fluid by wave method. Results in Physics, 2012, 2: 104-109
    22 Zhang HW, Yao Z, Wang JB, et al. Phonon dispersion analysis of carbon nanotubes based on inter-belt model and symplectic solution method. International Journal of Solids and Structures, 2007,44(20): 6428-6449
    23 钟万勰. 应用力学的辛数学方法. 北京:高等教育出版社, 2006 (Zhong Wanxie. Symplectic Method in Applied Mechanics. Beijing: Higher Education Press, 2006 ( in Chinese))
    24 Li W, Deng Z, Zhang S. Numerical algorithms for highly oscillatory dynamic system based on commutator-free method. Journal of Sound and Vibration, 2007, 302(1-2): 39-49
    25 吴锋,徐小明,高强等. 基于辛理论的Timoshenko 梁波散射分 析. 应用数学和力学, 2013, 34(12): 1225-35 (Wu Feng, Xu Xiaoming, Gao Qiang, et al. Analyzing the wave scattering in Timoshenko beam based on the symplectic theory. Applied Mathematics and Mechanics,2013, 34(12): 1225-35 (in Chinese))
    26 姚伟岸,钟万勰. 辛弹性力学. 北京:高等教育出版社, 2002 (Yao Weian, Zhong Wanxie. Symplectic Elasticity. Beijing: Higher Education Press, 2002 (in Chinese))
    27 Wang B, Deng Z, Ouyang H, et al. Wave characteristics of single-walled fluid-conveying carbon nanotubes subjected to multiphysical fields. Physica E: Low-dimensional Systems and Nanostructures,2013, 52: 97-105
    28 Narendar S, Gopalakrishnan S. Terahertz wave characteristics of a single walled carbon nanotube containing a fluid flow using the nonlocal Timoshenko beam model. Physica E: Low-dimensional Systems and Nanostructures, 2010, 42(5): 1706-12
  • 期刊类型引用(16)

    1. 励精为治,刘保国,刘彦旭,张义彬. 模型不确定转子系统动力学降阶模型构建方法. 机电工程. 2025(03): 472-480 . 百度学术
    2. 廖金军,于钟博,蒋海华,赵贵生. 基于数字孪生技术的盾构刀盘应力实时分析. 隧道建设(中英文). 2025(04): 844-851 . 百度学术
    3. 杨彪,黄宏彬,杜庆治,吴照刚,彭飞云,韩泽民. 基于特征正交分解的微波加热过程快速求解方法. 控制与决策. 2024(09): 3059-3068 . 百度学术
    4. 桑瑞涓,龚坚,路宽,靳玉林,张康宇,王衡. 高维非线性动力系统降维理论综述. 动力学与控制学报. 2024(09): 1-15 . 百度学术
    5. 肖龙辉,裴志勇,徐文君,吴卫国. 船体结构数字孪生技术及应用. 船舶力学. 2023(04): 573-582 . 百度学术
    6. 可钊,时永鑫,张鹏,田阔,王博. 基于全局POD降阶模型的复杂薄壁结构减振优化. 航空学报. 2023(13): 148-163 . 百度学术
    7. 郭玉杰,吴晗浪,李薇,李迎港,吴剑晨. 基于等几何分析的参数化曲梁结构非线性动力学降阶模型研究. 工程力学. 2022(08): 31-48 . 百度学术
    8. 张家铭,杨执钧,黄锐. 基于非线性状态空间辨识的气动弹性模型降阶. 力学学报. 2020(01): 150-161 . 本站查看
    9. 朱强华,杨恺,梁钰,高效伟. 基于特征正交分解的一类瞬态非线性热传导问题的新型快速分析方法. 力学学报. 2020(01): 124-138 . 本站查看
    10. 熊春宝,胡倩倩,郭颖. 孔隙率各向异性下饱和多孔弹性地基动力响应. 力学学报. 2020(04): 1120-1130 . 本站查看
    11. 李杨,秦庆华,张亮亮,高阳. 一维准晶功能梯度层合圆柱壳热电弹性精确解. 力学学报. 2020(05): 1286-1294 . 本站查看
    12. 史惠琦,王惠明. 一种新型介电弹性体仿生可调焦透镜的变焦分析. 力学学报. 2020(06): 1719-1729 . 本站查看
    13. 戴婷,戴宏亮,李军剑,贺其. 含孔隙变厚度FG圆板的湿热力学响应. 力学学报. 2019(02): 512-523 . 本站查看
    14. 何燕丽,赵翔. 曲梁压电俘能器强迫振动的格林函数解. 力学学报. 2019(04): 1170-1179 . 本站查看
    15. 杨健鹏,王惠明. 功能梯度球形水凝胶的化学力学耦合分析. 力学学报. 2019(04): 1054-1063 . 本站查看
    16. 梁钰,郑保敬,高效伟,吴泽艳,王峰. 基于POD模型降阶法的非线性瞬态热传导分析. 中国科学:物理学 力学 天文学. 2018(12): 36-45 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  976
  • HTML全文浏览量:  112
  • PDF下载量:  586
  • 被引次数: 29
出版历程
  • 收稿日期:  2015-05-06
  • 修回日期:  2015-07-26
  • 刊出日期:  2016-01-17

目录

    /

    返回文章
    返回