EI、Scopus 收录
中文核心期刊

长试验时间激波风洞测力技术研究

汪运鹏, 刘云峰, 苑朝凯, 罗长童, 王春, 胡宗民, 韩桂来, 赵伟, 姜宗林

汪运鹏, 刘云峰, 苑朝凯, 罗长童, 王春, 胡宗民, 韩桂来, 赵伟, 姜宗林. 长试验时间激波风洞测力技术研究[J]. 力学学报, 2016, 48(3): 545-556. DOI: 10.6052/0459-1879-15-295
引用本文: 汪运鹏, 刘云峰, 苑朝凯, 罗长童, 王春, 胡宗民, 韩桂来, 赵伟, 姜宗林. 长试验时间激波风洞测力技术研究[J]. 力学学报, 2016, 48(3): 545-556. DOI: 10.6052/0459-1879-15-295
Wang Yunpeng, Liu Yunfeng, Yuan Chaokai, Luo Changtong, Wang Chun, Hu Zongmin, Han Guilai, Zhao Wei, Jiang Zonglin. STUDY ON FORCE MEASUREMENT IN LONG-TEST DURATION SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 545-556. DOI: 10.6052/0459-1879-15-295
Citation: Wang Yunpeng, Liu Yunfeng, Yuan Chaokai, Luo Changtong, Wang Chun, Hu Zongmin, Han Guilai, Zhao Wei, Jiang Zonglin. STUDY ON FORCE MEASUREMENT IN LONG-TEST DURATION SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 545-556. DOI: 10.6052/0459-1879-15-295
汪运鹏, 刘云峰, 苑朝凯, 罗长童, 王春, 胡宗民, 韩桂来, 赵伟, 姜宗林. 长试验时间激波风洞测力技术研究[J]. 力学学报, 2016, 48(3): 545-556. CSTR: 32045.14.0459-1879-15-295
引用本文: 汪运鹏, 刘云峰, 苑朝凯, 罗长童, 王春, 胡宗民, 韩桂来, 赵伟, 姜宗林. 长试验时间激波风洞测力技术研究[J]. 力学学报, 2016, 48(3): 545-556. CSTR: 32045.14.0459-1879-15-295
Wang Yunpeng, Liu Yunfeng, Yuan Chaokai, Luo Changtong, Wang Chun, Hu Zongmin, Han Guilai, Zhao Wei, Jiang Zonglin. STUDY ON FORCE MEASUREMENT IN LONG-TEST DURATION SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 545-556. CSTR: 32045.14.0459-1879-15-295
Citation: Wang Yunpeng, Liu Yunfeng, Yuan Chaokai, Luo Changtong, Wang Chun, Hu Zongmin, Han Guilai, Zhao Wei, Jiang Zonglin. STUDY ON FORCE MEASUREMENT IN LONG-TEST DURATION SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 545-556. CSTR: 32045.14.0459-1879-15-295

长试验时间激波风洞测力技术研究

基金项目: 国家自然科学基金资助项目(11302232,1147228.
详细信息
    通讯作者:

    汪运鹏,助理研究员,主要研究方向:高焓激波风洞试验技术,高温高超声速流CFD数值模拟.E-mail:wangyunpeng@imech.ac.cn

  • 中图分类号: V211.751

STUDY ON FORCE MEASUREMENT IN LONG-TEST DURATION SHOCK TUNNEL

  • 摘要: 中国科学院力学研究所复现飞行条件高超声速激波风洞JF12的落成突破了毫秒级试验时间的瓶颈,有效试验时间超过100ms.因此,对于JF12长试验时间激波风洞的测力试验,基于应变天平技术较为成熟、结构简单等优点,我们考虑采用传统的应变计天平.但是,激波风洞来流冲击所带来的惯性力干扰导致天平测力系统产生低频振动,传统内置应变天平的结构刚度很难保证信号有足够的处理周期,这大大限制了激波风洞测力模型的尺寸和重量.针对这个难题,基于JF12激波风洞的运行特点及对测力天平刚度特性的特殊要求,优化设计了应变天平的测力单元结构以适用于这种脉冲动态测力试验,相应加工制造了大刚度、低干扰、高灵敏度的系列脉冲型应变天平,结构形式包含了杆式和盒式,最大载荷(法向力)从1kN到30kN,以满足不同尺度飞行器的测力试验需求.同时,我们应用不同尺度的测力模型对研制的脉冲型天平在JF12激波风洞进行了一系列动态气动力测量试验,以进一步评估JF12系列脉冲型应变天平的结构特性和测力性能.
    Abstract: JF12 hypersonic shock tunnel has been designed and built in Institute of Mechanics, CAS. The performance tests demonstrated that this facility is capable of reproducing the pure airflow with Mach numbers from 5-9 at altitude of 25-50 km with at least 100 ms test duration. Therefore, a sti construction balance, that is the traditional internal strain-gaged balance (SGB), was considered to use in this long-test duration impulse facility due to its mature technology, simple structure and low cost. However, when the force test is carried out in shock tunnel, the inertial forces lead to low frequency vibrations of the model and its motion cannot be addressed through digital filtering since enough cycles cannot be found during a shock tunnel run. This implies restriction on the model's size and mass as its natural frequencies are inversely proportional the length scale of the model. Therefore, there are still many problems for the force measurement in a shock tunnel, especially for the large and heavy model. In order to overcome the technical di culties, JF12 series SGBs were designed and fabricated. The maximum loads are from 1 kN to 30 kN for the test models with di erent scale. The di erent structures were proposed and optimized for two types of balance, i.e., the sting and cassette balances. The finite element method was employed for the analyses of vibration characteristic of the model-balance-support system in order to ensure enough cycles, especially axial force signal during 100 ms test duration. In addition, the force tests were carried out using several large-scale test models. JF12 series pulse-type SGBs show good performances and the frequency of the model-balance-support system increases due to the sti construction of the SGB.
  • 1 Arrington PJ, Joiner RJ, Henderson AJ. Longitudinal characteristics of several configurations at hypersonic Mach numbers in conical and contoured nozzles. NASA Technical Note DC2489, 1954
    2 Bernstein L. Force measurement in short-duration hypersonic facilities. AGARDograph No.214, 1975
    3 Naumann K, Ende H, Mathieu G, et al. Millisecond aerodynamic force measurement with side-jet model in the ISL shock tunnel. AIAA Journal, 1993, 31 (6): 1068-1074
    4 Naumann K, Ende H. A novel technique for aero- dynamic force measurements in shock tubes. AIP Conference Proceedings, 1990,208: 653-658
    5 Joarder R, Jagadeesh G. A new free-floating accelerometer balance system for force measurements in shock tunnels. Shock Waves,2003, 13: 409-412
    6 Saravanan S, Jagadeesh G, Reddy KPJ. Aerodynamic force mea surement using 3-component accelerometer force balance system in a hypersonic shock tunnel. Shock Waves, 2009, 18: 425-435
    7 Niranjan S, Mahapatra DR, Jagadeesh G, et al. An accelerometer balance system for measurement of aerodynamic force coefficients over blunt bodies in a hypersonic shock tunnel. Meas Sci Technol,2003, 14: 260-272
    8 Robinson MJ, Martinez Schramm J, Hannemann K. Design and implementation of an internal stress wave force balance in a shock tunnel. CEAS Space Journal, 2011, 1: 45-57
    9 Sanderson SR, Simmons JM, Tuttle SL. A drag measurement technique for free-piston shock tunnels. AIAA Paper 91-0540, 1991
    10 David JM, William JTD, Simmons JM. Three-component force balance for flows of millisecond duration. AIAA Journal, 1996, 34(3):590-595
    11 Jiang ZL, Yu HR. Experiments and development of long-testduration hypervelocity detonation-driven shock tunnel (LHDst). AIAA paper 2014-1012, 2014
    12 贺德馨. 风洞天平. 北京: 国防工业出版社, 2001: 91-97 (He Dexin. Wind Tunnel Balances. Beijing: National Defence Industry Press, 2001: 91-97 (in Chinese))
    13 张涵信. 高超声速气动力试验. 北京:国防工业出版社,2004 (Zhang Hanxin. Force Test in Hypersonic Flow. Beijing: National Defence Industry Press, 2004 (in Chinese))
    14 GJB4399-2002. 高超声速风洞气动力试验方法. 北京:总装军校出版发行部(GJB4399-2002. Force Test Method for Hypersonic Wind Tunnel. Beijing: Military Standard Publishing Department (in Chinese))
    15姚文秀,张陈安,陈文龙等. 激波风洞实验测力技术研究. 见: LHD2011 年度夏季学术研讨会,2011 (Yao Wenxiu, Zhang Chenan, Chen Wenlong, Yang Yaodong. Study of force measurement in shock tunnel. In: Proc. of LHD 2011 Annual Summer Symposium, 2011 (in Chinese))
    16 顾兴若. 国外风洞应变天平技术发展动态. 气动研究与实验,1998,15(4): 8-14 (Gu Xingruo. Foreign technique development in wind tunnel strain-gaged balances. Aerodynamic Research and Experiment, 1998, 15(4): 8-14 (in Chinese))
    17 Wang YP, Jiang ZL, Zhao W, et al. Study and analyses on the structural performance of strain-gaged balance for a long-test duration shock tunnel. In: Proc. of 9th International Symposium on Strain- Gaged Balances, Seattle, Washington, USA, May, 2014
    18 Wang YP, Liu YF, Yuan CK, et al. Force measurement using a pulsetype strain-gaged balance in hypersonic shock tunnel. In: The proceedings of the 8th European Symposium on Aerothermodynamics for Space Vehicles, Lisbon, Portugal, March 2015.
    19 姜宗林. 中国科学院高温气体动力学重点实验室研究进展. 力学进展, 2008, 38(2): 234-236 (Jiang Zonglin. Research Progress in Laboratory of High-temperature Gas Dynamics of Chinese Academy of Sciences. Advances in Mechanics, 2008, 38(2): 234-236 (in Chinese))
    20 姜宗林. 爆轰驱动高焓激波风洞及其瞬态测试技术的研究与进展. 力学进展, 2001, 31(2): 312-317 (Jiang Zonglin. Research on detonation driven shock tunnel and transient testing technique. Advances in Mechanics, 2001, 31(2): 312-317 (in Chinese))
    21 Yu H, Esser B, Lenartz M, et al. Gaseous detonation driver for a shock tunnel. Shockwaves, 1992, 2: 245-254
    22 姜宗林, 李进平, 赵伟等. 长试验时间爆轰驱动激波风洞技术研究. 力学学报, 2012,44(5): 824-831 (Jiang Zonglin, Li Jinping, Zhao Wei, et al. Investigating into techniques for extending the test-duration of detonation-driven shock tunnels. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 824-831 (in Chinese))
    23 李进平, 冯珩, 姜宗林. 激波/边界层相互作用诱导的激波风洞试验气体污染问题. 力学学报,2008, 40(3): 289-296 (Li Jinping, Feng Heng, Jiang Zonglin. Gas contamination induced by the interaction of shock/boundary layer in shock tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2008,40(3):289-296 (in Chinese))
    24 李进平,冯珩,姜宗林等. 爆轰驱动激波管缝合激波马赫数计算. 空气动力学学报,2008, 26(3): 291-296 (Li Jinping, Feng Heng, Jiang Zonglin, et al. Numerical computation on the tailored shock Mach numbers for a hydrogen oxygen detonation shock tube. Acta Aerodynamica Sinica, 2012, 44(5): 824-831 (in Chinese))
    25黄志澄. 高超声速气动试验的新进展. 气动实验与测量控制,1993, 7(1): 1-13 (Huang Zhicheng. The new progress of hypersonic aerodynamic and aerothermodynamic testing. Aerodynamic Experiment and Measurement & Control, 1993, 7(1): 1-13 (in Chinese))
    26 Storkmann V, Olivier H, Gronig, H. Force Measurements in Hypersonic Impulse Facilities. AIAA Journal, 1998, 36(3): 342-348
    27 程忠宇, 陈宏, 张琦. 多加速度计振动分离惯性补偿测力技术. 流体力学实验与测量, 1999, 13(4): 57-60 (Cheng Zhongyu, Chen Hong, Zhang Qi. Inertia compensation technology based on multiaccelerometer vibration separating. Experiments and Measurements in Fluid Mechanics, 1999, 13(4): 57-60 (in Chinese))
    28 Naumann KW, Ende H, Mathieu G. Technique for aerodynamic force measurement in shock tunnels. Shockwaves, 1991, 1(3): 223-232
    29 GJB2244-2011 风洞应变天平规范. 北京: 总装备部军标出版发行部, 2011 (GJB2244-2011. Specification for wind tunnel strain gage balance. Beijing: Military Standard Publishing Department, 2011 (in Chinese))
    30 姜宗林,赵伟,刘云峰等. JF-12 高超声速风洞气动力测量技术与试验研究进展. 见: 第六届全国高超声速技术学术会议,云南,2013-12 (Jiang Zonglin, Zhao Wei, Liu Yunfeng, et al. Study progress of force measurement and test in JF-12 hypersonic shock tunnel. In: Proc. of 6th Hypersonic Technology Conference, Yunnan,2013-12 (in Chinese))
    31 Ladson C, Blackstock T. Air-helium simulation of the aerodynamic force coefficients of cones at hypersonic speeds. NASA Technical Note DC1473, 1962
    32 Penland JA. Aerodynamic force characteristics of a series of lifting cone and cone-cylinder configurations at M = 6:83 and angles of attack up to 130 degree. NASA Technical Note DC840, 1961
  • 期刊类型引用(16)

    1. 钱致光,任宗金,王宇航,王郁赫,徐馨. 压电杆式天平六维力测量研究. 振动与冲击. 2024(17): 177-183 . 百度学术
    2. 焦林虎,任宗金,张军,李小刚,王碧玲. 六维压电风洞盒式天平研究. 传感器与微系统. 2024(10): 31-34 . 百度学术
    3. 聂少军,汪运鹏,王春,姜宗林. 激波风洞测力信号的频域数据深度学习建模分析方法. 振动与冲击. 2023(13): 296-302+315 . 百度学术
    4. 刘美宽,韩桂来,姜宗林. 高超声速平板边界层数值模拟及试验研究. 气动研究与试验. 2023(05): 51-61 . 百度学术
    5. 聂少军,汪运鹏. 基于时频变换的激波风洞天平信号分析与处理. 力学学报. 2022(01): 232-243 . 本站查看
    6. 赵荣娟,刘施然,周正,吴里银,吕治国. 激波风洞超燃冲压发动机推力测量技术研究. 实验流体力学. 2022(04): 103-108 . 百度学术
    7. 聂少军,王粤,汪运鹏,赵敏,隋婧. 循环神经网络在智能天平研究中的应用. 力学学报. 2021(08): 2336-2344 . 本站查看
    8. 聂少军,汪运鹏,薛晓鹏,姜宗林. 激波风洞高低压段钢膜片破裂特性研究. 力学学报. 2021(06): 1747-1757 . 本站查看
    9. 曾慧,杨鸿,罗义成,孙宗祥. 现有高超声速设备的试验能力局限综述. 飞航导弹. 2021(08): 17-23 . 百度学术
    10. 赵荣娟,黄军,刘施然,吕治国,李国志. ANSYS在压电天平设计中的应用. 实验流体力学. 2020(01): 96-102 . 百度学术
    11. 汪运鹏,李小刚,姜宗林. 脉冲型天平高精度全自动校准系统. 中国科学:物理学 力学 天文学. 2020(06): 76-86 . 百度学术
    12. 汪运鹏,杨瑞鑫,聂少军,姜宗林. 基于深度学习技术的激波风洞智能测力系统研究. 力学学报. 2020(05): 1304-1313 . 本站查看
    13. 赵金山,张志刚,石义雷,陈挺,肖雨,粟斯尧,廖军好,彭治雨. 高超声速飞行器气动热关联换算方法研究. 力学学报. 2018(05): 1235-1245 . 本站查看
    14. 张小庆,吕金洲,刘伟雄,高昌. 脉冲风洞一体化飞行器测力精度分析. 航空动力学报. 2018(12): 2924-2929 . 百度学术
    15. 张小庆,王琪,刘伟雄,吕金洲. 高超声速飞行器脉冲风洞测力系统研究. 实验流体力学. 2018(05): 13-18 . 百度学术
    16. 张子健,刘云峰,姜宗林. 振动激发对高超声速气动力/热影响. 力学学报. 2017(03): 616-626 . 本站查看

    其他类型引用(13)

计量
  • 文章访问数:  1235
  • HTML全文浏览量:  167
  • PDF下载量:  619
  • 被引次数: 29
出版历程
  • 收稿日期:  2015-07-29
  • 修回日期:  2015-10-12
  • 刊出日期:  2016-05-17

目录

    /

    返回文章
    返回