EI、Scopus 收录
中文核心期刊

两串列扑翼的相位差对平均推力影响机理的实验研究

宫武旗, 贾博博, 席光

宫武旗, 贾博博, 席光. 两串列扑翼的相位差对平均推力影响机理的实验研究[J]. 力学学报, 2015, 47(6): 1017-1025. DOI: 10.6052/0459-1879-14-378
引用本文: 宫武旗, 贾博博, 席光. 两串列扑翼的相位差对平均推力影响机理的实验研究[J]. 力学学报, 2015, 47(6): 1017-1025. DOI: 10.6052/0459-1879-14-378
Gong Wuqi, Jia Bobo, Xi Guang. AN EXPERIMENTAL STUDY ON THE INFLUENCE OF THE PHASE DIFFERENCE ON THE MEAN THRUST OF TWO PLUNGING WINGS IN TANDEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1017-1025. DOI: 10.6052/0459-1879-14-378
Citation: Gong Wuqi, Jia Bobo, Xi Guang. AN EXPERIMENTAL STUDY ON THE INFLUENCE OF THE PHASE DIFFERENCE ON THE MEAN THRUST OF TWO PLUNGING WINGS IN TANDEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1017-1025. DOI: 10.6052/0459-1879-14-378
宫武旗, 贾博博, 席光. 两串列扑翼的相位差对平均推力影响机理的实验研究[J]. 力学学报, 2015, 47(6): 1017-1025. CSTR: 32045.14.0459-1879-14-378
引用本文: 宫武旗, 贾博博, 席光. 两串列扑翼的相位差对平均推力影响机理的实验研究[J]. 力学学报, 2015, 47(6): 1017-1025. CSTR: 32045.14.0459-1879-14-378
Gong Wuqi, Jia Bobo, Xi Guang. AN EXPERIMENTAL STUDY ON THE INFLUENCE OF THE PHASE DIFFERENCE ON THE MEAN THRUST OF TWO PLUNGING WINGS IN TANDEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1017-1025. CSTR: 32045.14.0459-1879-14-378
Citation: Gong Wuqi, Jia Bobo, Xi Guang. AN EXPERIMENTAL STUDY ON THE INFLUENCE OF THE PHASE DIFFERENCE ON THE MEAN THRUST OF TWO PLUNGING WINGS IN TANDEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1017-1025. CSTR: 32045.14.0459-1879-14-378

两串列扑翼的相位差对平均推力影响机理的实验研究

基金项目: 国家自然科学基金资助项目(50676072).
详细信息
    作者简介:

    宫武旗,副教授,主要研究方向:流体机械气动力学及试验技术、湍流减阻、仿生翼流体动力学.E-mail:wqgong@mail.xjtu.edu.cn

  • 中图分类号: V211.1

AN EXPERIMENTAL STUDY ON THE INFLUENCE OF THE PHASE DIFFERENCE ON THE MEAN THRUST OF TWO PLUNGING WINGS IN TANDEM

Funds: The project was supported by the National Natural Science Foundation of China (50676072).
  • 摘要: 在一个低雷诺数的循环水洞中,实验研究了前后翅翼之间的相位差对两串列扑翼平均推力的影响.利用一个三分量的Kistler 压力传感器来测量扑翼的瞬时力;利用一个数字粒子测速仪系统(TSI DPIV) 来测量扑翼的前缘涡以及其周围的流场. 当相位差从0° 增加到360°,前翅的平均推力随着相位差正弦变化;前翅平均推力的增加是由于后翅的前缘涡和滞止区域增加了前翅的有效攻角. 后翅平均推力曲线有一个明显的V 字形低谷.低谷处较小的平均推力是由于前翅的脱落涡抑制了后翅前缘涡的形成并且减小了其有效攻角.当间距为0.5倍弦长相位差约为290°时,前后翅翼平均推力系数的合值能达到最大值0.667,明显大于两倍的单翼平均推力系数(2×0.255).
    Abstract: An experimental study is performed to investigate the e ects of phase difference on the mean thrust coe cient of two wings in tandem undergoing a two-dimensional (2-D) plunging motion in a low Reynolds number water tunnel. A 3-D force sensor and a 2-D digital particle image velocimetry (DPIV) are used to measure the wing thrust force and leading edge vortex (LEV) around the wings, respectively. The mean thrust coe cient of the forewing follows a sinusoidal curve when the phase difference changes from 0° to 360°.The increase of the mean thrust coe cient of the forewing is caused by the LEV and stagnation region of the hindwing enhancing the jet velocity behind the forewing and its e ective angle of attack. The curve of the mean thrust coe cient of the hindwing has a V-shaped feature as the phase difference increases. The decreased coe cient in the bottom of the V-shaped curve is caused by the vortex shed from the forewing restraining the LEV formation of the hindwing and reducing its e ective angle of attack. When the spacing distance is half chord and phase difference is 290°, the combined mean thrust coe cient of the forewing and hindwing can reach the maximum value of 0.667, over twice the reference single wing value (2×0.255).
  • Usherwood JR, Lehmann FO. Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. Journal of The Royal Society Interface, 2008, 5(28): 1303-1307
    Lehmann FO. When wings touch wakes: Understanding locomotor force control by wake wing interference in insect wings. Journal of Experimental Biology, 2008, 211(2): 224-233
    Triantafyllou GS, Triantafyllou MS, Grosenbaugh MA. Optimal thrust development in oscillating foils with application to fish propulsion. Journal of Fluids and Structures, 1993, 7(2): 205-224
    Hall KC, Hall SR. Minimum induced power requirements for flapping flight. Journal of Fluid Mechanics, 1996, 323(25): 285-315
    Tuncer IH, Platzer MF. Thrust generation due to airfoil flapping. AIAA Journal, 1996, 34(2): 324-331
    Streitlien K, Triantafyllou GS, Striantafyllou MS. Efficient foil propulsion through vortex control. AIAA Journal, 1996, 34(11): 2315-2319
    Jones KD, Platzer MF. Numerical computation of flapping-wing propulsion and power extraction. AIAA Paper, 1997, 97: 826
    Fenercioglu I, Cetiner O. Categorization of flow structures around a pitching and plunging airfoil. Journal of Fluids and Structures, 2012, 31: 92-102
    Lian Y, Broering T, Hord K, et al. The characterization of tandem and corrugated wings. Progress in Aerospace Sciences, 2014, 65: 41-69
    Knoller R. Die Gesetze des Luftwiderstandes. Flug-und Motortechnik (Wien). 1909, 3(21): 1-7
    Betz A. Ein Beitrag zur Erklaerung Segelfluges. Zeitschrift f" ur Flugtechnik und Motorluftschiffahrt, 1912, 3: 269-272
    Von K. General Aerodynamic Theory. Perfect fluids. Aerodynamic Theory, 1963, 2: 328
    Bohl DG, Koochesfahani MM. MTV measurements of the vortical field in the wake of an airfoil oscillating at high reduced frequency. Journal of Fluid Mechanics, 2009, 620: 63-88
    Ramamurti R, Sandberg W. Simulation of flow about flapping airfoils using finite element incompressible flow solver. AIAA Journal, 2001, 39(2): 253-260
    Koochesfahani MM. Vortical patterns in the wake of an oscillating airfoil. AIAA Journal, 1989, 27(9): 1200-1205
    Broering TM, Lian Y, Henshaw W. Numerical investigation of energy extraction in a tandem flapping wing configuration. AIAA Journal, 2012, 50(11): 2295-2307
    Broering TM, Lian Y, Henshaw W. Numerical study of two flapping airfoils in tandem configuration. In: Proc. of 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010
    Broering TM, Lian Y. The effect of phase angle and wing spacing on tandem flapping wings. Acta Mechanica Sinica, 2012, 28(6): 1557-1571
    Yilmaz SB, Sahin M, Unal MF. Thrust enhancement of flapping wings in tandem and biplane configurations by pure plunging motion. Bulletin of the American Physical Society, 2012, 1: 26009
    Raffel M. Particle Image Velocimetry: A Practical Guide. Springer, 2007: 16
    Anderson JM, Streitlien K, Barrett DS, et al. Oscillating foils of high propulsive efficiency. Journal of Fluid Mechanics, 1998, 360(1): 41-72
    Platzer MF, Jones KD, Young J, et al. Flapping wing aerodynamics: Progress and challenges. AIAA Journal, 2008, 46(9): 2136-2149
    Jones KD, Dohring CM, Platzer MF. Experimental and computational investigation of the Knoller-Betz effect. AIAA Journal, 1998, 36(7): 1240-1246
    Zhong H, Lee C, Su Z, et al. Experimental investigation of freely falling thin disks. Part 1. The flow structures and Reynolds number effects on the zigzag motion. Journal of Fluid Mechanics, 2013, 716: 228-250
    Lee C, Su Z, Zhong H, et al. Experimental investigation of freely falling thin disks. Part 2. Transition of three-dimensional motion from zigzag to spiral. Journal of Fluid Mechanics, 2013, 732: 77-104
    Zhong H, Chen S, Lee C. Experimental study of freely falling thin disks: Transition from planar zigzag to spiral. Physics of Fluids, 2011, 23(1): 11702
    Maybury WJ, Lehmann FO. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Journal of Experimental Biology, 2004, 207(26): 4707-4726
    Hover FS, Haugsdal O, Triantafyllou MS. Effect of angle of attack profiles in flapping foil propulsion. Journal of Fluids and Structures, 2004, 19(1): 37-47
    Xiao Q, Liao W. Numerical investigation of angle of attack profile on propulsion performance of an oscillating foil. Computers & Fluids, 2010, 39(8): 1366-1380
计量
  • 文章访问数:  884
  • HTML全文浏览量:  103
  • PDF下载量:  1206
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-26
  • 修回日期:  2015-08-26
  • 刊出日期:  2015-11-17

目录

    /

    返回文章
    返回