EI、Scopus 收录
中文核心期刊

基于应变梯度中厚板单元的石墨烯振动研究

徐巍, 王立峰, 蒋经农

徐巍, 王立峰, 蒋经农. 基于应变梯度中厚板单元的石墨烯振动研究[J]. 力学学报, 2015, 47(5): 751-761. DOI: 10.6052/0459-1879-15-074
引用本文: 徐巍, 王立峰, 蒋经农. 基于应变梯度中厚板单元的石墨烯振动研究[J]. 力学学报, 2015, 47(5): 751-761. DOI: 10.6052/0459-1879-15-074
Xu Wei, Wang Lifeng, Jiang Jingnong. FINITE ELEMENT ANALYSIS OF STRAIN GRADIENT MIDDLE THICK PLATE MODEL ON THE VIBRATION OF GRAPHENE SHEETS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 751-761. DOI: 10.6052/0459-1879-15-074
Citation: Xu Wei, Wang Lifeng, Jiang Jingnong. FINITE ELEMENT ANALYSIS OF STRAIN GRADIENT MIDDLE THICK PLATE MODEL ON THE VIBRATION OF GRAPHENE SHEETS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 751-761. DOI: 10.6052/0459-1879-15-074
徐巍, 王立峰, 蒋经农. 基于应变梯度中厚板单元的石墨烯振动研究[J]. 力学学报, 2015, 47(5): 751-761. CSTR: 32045.14.0459-1879-15-074
引用本文: 徐巍, 王立峰, 蒋经农. 基于应变梯度中厚板单元的石墨烯振动研究[J]. 力学学报, 2015, 47(5): 751-761. CSTR: 32045.14.0459-1879-15-074
Xu Wei, Wang Lifeng, Jiang Jingnong. FINITE ELEMENT ANALYSIS OF STRAIN GRADIENT MIDDLE THICK PLATE MODEL ON THE VIBRATION OF GRAPHENE SHEETS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 751-761. CSTR: 32045.14.0459-1879-15-074
Citation: Xu Wei, Wang Lifeng, Jiang Jingnong. FINITE ELEMENT ANALYSIS OF STRAIN GRADIENT MIDDLE THICK PLATE MODEL ON THE VIBRATION OF GRAPHENE SHEETS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 751-761. CSTR: 32045.14.0459-1879-15-074

基于应变梯度中厚板单元的石墨烯振动研究

基金项目: 教育部新世纪优秀人才支持计划(NCET-11-0832),江苏省第四期"333工程"培养资金资助项目以及中央高校基本科研业务费专项资金.
详细信息
    通讯作者:

    王立峰,教授,主要研究方向:纳尺度结构动力学.E-mail:walfe@nuaa.edu.cn

  • 中图分类号: O326

FINITE ELEMENT ANALYSIS OF STRAIN GRADIENT MIDDLE THICK PLATE MODEL ON THE VIBRATION OF GRAPHENE SHEETS

Funds: The project was supported by the Program for New Century Excellent Talents in University (NCET-11-0832), 333 Talents Program in Jiangsu Province and Fundamental Research Funds for the Central Universities of China.
  • 摘要: 基于应变梯度理论建立了单层石墨烯等效明德林(Mindlin) 板动力学方程,推导了四边简支明德林中厚板自由振动固有频率的解析解. 提出了一种考虑应变梯度的4 节点36 自由度明德林板单元,利用虚功原理建立了单层石墨烯的等效非局部板有限元模型. 通过对石墨烯振动问题的研究,验证了应变梯度有限元计算结果的收敛性. 运用该有限元法研究了尺寸、振动模态阶数以及非局部参数对石墨烯振动特性的影响. 研究表明,这种单元能够较好地适用于研究考虑复杂边界条件石墨烯的尺度效应问题. 基于应变梯度理论的明德林板所获得石墨烯的固有频率小于基于经典明德林板理论得到的结果. 尺寸较小、模态阶数较高的石墨烯振动尺度效应更加明显. 无论采用应变梯度理论还是经典弹性本构关系,考虑一阶剪切变形的明德林板模型预测的固有频率低于基尔霍夫(Kirchho) 板所预测的固有频率.
    Abstract: The dynamics equation of the Mindlin middle thick plate model based on strain gradient theory is formulated to study the vibration of single-layered graphene sheets (SLGSs). Analytical solution of the natural frequency for free vibration of Mindlin plate with all edges simply-supported is derived. A 4-node 36-degree-of-freedom (DOF) Mindlin plate element is proposed to build the nonlocal finite element (FE) plate model with second order gradient of strain taken into consideration. This FE method is used to study the influences of the size, vibration mode and nonlocal parameters on the scale effect of vibration behaviors of SLGSs, which validates the reliability of the FE model for predicting the scale effect on the vibrational SLGSs with complex boundary conditions. The natural frequencies obtained by the strain gradient Mindlin plate are lower than that obtained by classical Mindlin plate model. The natural frequencies of SLGSs obtained by Mindlin plate model with first-order shear deformation taken into account are lower than that obtained by Kirchhoff plate model for both strain gradient model and classical case. The small scale effect increases with the increase of the mode order and the decrease of the size of SLGSs.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669
    Stelmashenko NA, Walls MG, Brown LM, et al. Microindentations on W and Mo oriented single crystals: an STM study. Acta Metallurgica et Materials, 1993, 41(10): 2855-2865
    Fleck NA, Muller GM, Ashby MF, et al. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materials, 1994, 42: 475-487
    Stolken JS, Evans AG. A microbend test method for measuring the plasticity length scale. Acta Metallurgica et Materials, 1998, 46: 5109-5115
    Wang LF, Hu HY. Flexural wave propagation in single-walled carbon nanotubes. Physical Review B, 2005, 71: 195412
    冯秀艳, 郭香华, 方岱宁等. 微薄梁三点弯曲的尺度效应研究. 力学学报,2007,39(4): 479-485 (Feng Xiuyan, Guo Xianghua, Fang Daining, et al. Three-point microbend size effects for pure Ni foils. Chinese Journal of Theoretical and Applied Mechanics, 2007,39(4): 479-485 (in Chinese))
    Bazant ZP, Jirasek M. Nonlocal integral formulations of plasticity and damage: survey of progress. Journal of Engineering Mechanics, 2002, 128(11): 1119-1149
    Papargyri-Beskou S, Beskos DE. Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Archive of Applied Mechanics, 2008, 78(8): 625-635
    Lazopoulos KA. On the gradient strain elasticity theory of plates. European Journal of Mechanics, 2004, 23(5): 843-852
    Lazopoulos KA. On bending of strain gradient elastic micro-plates. Mechanics Research Communications, 2009, 36(7): 777-783
    徐巍, 王立峰, 蒋经农. 基于应变梯度有限元的单层石墨烯振动研究. 固体力学学报,2014,35(5): 441-450 (Xu Wei, Wang Lifeng, Jiang Jingnong. Finite element analysis of strain gradient on the vibration of single-layered graphene sheets. Chinese Journal of Solid Mechanics, 2014, 35(5): 441-450 (in Chinese))
    Pradhan SC, Phadikar JK. Nonlocal elasticity theory for vibration of nanoplates. Journal of Sound and Vibration, 2009, 325: 206-223
    Ma HM, Gao XL, Reddy JN. A non-classical mindlin plate model based on a modified couple stress theory. Acta Mechanica, 2011, 220: 217-235
    Zhang B, He YM, Liu DB, et al. A non-classical mindlin plate finite element based on a modified couple stress theory. European Journal of Mechanics A/Solids, 2013, 42: 63-80
    Shi JX, Ni QQ, Lei XW, et al. Study on wave propagation characteristics of double-layer graphene sheets via nonlocal Mindlin-Reissner plate theory. International Journal of Mechanical Sciences, 2014, 84: 25-30
    Arash B, Wang Q, Liew KM. Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation. Computer Methods in Applied Mechanics and Engineering, 2012, 223: 1-9
    Soh A, Chen WJ. Finite element formulations of strain gradient theory for microstructures and the C^0-1 patch test. International Journal for Numerical Methods in Engineering, 2004, 61(3): 433-454
    Ansari R, Rajabiehfard R, Arash B. Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Computational Materials Science, 2010, 49(4):831-838
    Askes H, Suiker ASJ, Sluys LJ. A classification of higher-order strain-gradient models - linear analysis. Archive of Applied Mechanics, 2002, 72: 171-188
    赵杰, 陈万吉, 冀宾. 关于两种二阶应变梯度理论. 力学学报,2010,42(1): 138-145 (Zhao Jie, Chen Wanji, Ji Bin. A study on the two second-order strain gradient theories. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 138-145 (in Chinese))
    Liu RM, Wang LF. Thermal vibrations of single-layered graphene sheets by molecular dynamics. Journal of Nanoscience and Nanotechnology, 2013, 13(2): 1059-1062
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-04
  • 修回日期:  2015-06-28
  • 刊出日期:  2015-09-17

目录

    /

    返回文章
    返回