EI、Scopus 收录
中文核心期刊

页岩气井组分比例变化规律研究

李道伦, 郑德温, 方朝合, 张龙军, 查文舒, 卢德唐

李道伦, 郑德温, 方朝合, 张龙军, 查文舒, 卢德唐. 页岩气井组分比例变化规律研究[J]. 力学学报, 2015, 47(6): 899-905. DOI: 10.6052/0459-1879-15-129
引用本文: 李道伦, 郑德温, 方朝合, 张龙军, 查文舒, 卢德唐. 页岩气井组分比例变化规律研究[J]. 力学学报, 2015, 47(6): 899-905. DOI: 10.6052/0459-1879-15-129
Li Daolun, Zheng Deweny, Fang Chaohe, Zhang Longjun, Zha Wenshu, Lu Detang. SENSITIVITY STUDY OF FLOWING GAS COMPOSITION FOR WELLS IN SHALE GAS RESERVOIR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 899-905. DOI: 10.6052/0459-1879-15-129
Citation: Li Daolun, Zheng Deweny, Fang Chaohe, Zhang Longjun, Zha Wenshu, Lu Detang. SENSITIVITY STUDY OF FLOWING GAS COMPOSITION FOR WELLS IN SHALE GAS RESERVOIR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 899-905. DOI: 10.6052/0459-1879-15-129
李道伦, 郑德温, 方朝合, 张龙军, 查文舒, 卢德唐. 页岩气井组分比例变化规律研究[J]. 力学学报, 2015, 47(6): 899-905. CSTR: 32045.14.0459-1879-15-129
引用本文: 李道伦, 郑德温, 方朝合, 张龙军, 查文舒, 卢德唐. 页岩气井组分比例变化规律研究[J]. 力学学报, 2015, 47(6): 899-905. CSTR: 32045.14.0459-1879-15-129
Li Daolun, Zheng Deweny, Fang Chaohe, Zhang Longjun, Zha Wenshu, Lu Detang. SENSITIVITY STUDY OF FLOWING GAS COMPOSITION FOR WELLS IN SHALE GAS RESERVOIR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 899-905. CSTR: 32045.14.0459-1879-15-129
Citation: Li Daolun, Zheng Deweny, Fang Chaohe, Zhang Longjun, Zha Wenshu, Lu Detang. SENSITIVITY STUDY OF FLOWING GAS COMPOSITION FOR WELLS IN SHALE GAS RESERVOIR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 899-905. CSTR: 32045.14.0459-1879-15-129

页岩气井组分比例变化规律研究

基金项目: 国家重大科技专项(2011ZX05009-006),973项目(2011CB707305),中国科学院战略性先导科技专项(XDB10030402)和中石油科学研究与技术开发项目(2015A-4812)资助项目.
详细信息
    通讯作者:

    李道伦,教授,主要研究方向:渗流机理研究、页岩气流动机理研究、油藏数值模拟.E-mail:LdaoL@ustc.edu.cn

  • 中图分类号: TE319

SENSITIVITY STUDY OF FLOWING GAS COMPOSITION FOR WELLS IN SHALE GAS RESERVOIR

Funds: The project was supported by the National Key Science and Technology Project (2011ZX05009-006), Major State Basic Research Development Program of China (973 Program) (2011CB707305), and China Scholarship Council, CAS Strategic Priority Research Program (XDB10030402), and Scientific Research and Technology Development Program of Petro China (2015A-4812).
  • 摘要: 页岩气开发过程中,生产井产出气的组分比例会随时间发生变化.本文基于组分模型数值模拟研究了生产井中甲烷组分比例变化的规律.研究表明,吸附气、渗透率与孔隙度影响页岩气组分比例的瞬态响应特征. 吸附气显著影响组分比例的变化规律,吸附量的大小决定组分比例的变化值及组分比例导数曲线的上下位置. 渗透率影响组分比例初期变化规律,但在后期,不同渗透率对瞬态组分比例规律的影响基本一致.孔隙度对组分比例变化及其导数曲线的影响与吸附气的影响类似,但在生产初期,孔隙度对组分比例的影响要小于吸附气对组分比例的影响. 本文的研究提供了一种进行页岩地层参数评价的新方法.
    Abstract: Because of the ultra-low permeability of the shale-gas reservoir, the transient flow in these reservoirs can last many years and radial flow is very di cult to reach, which makes the pressure transient analysis impractical. Transientrate-analysis methods as a substitute for pressure transient analysis to determine reservoir parameters have become very popular in recent years. However, due to the absence of the flowing well pressure and low-frequency, low-resolution production data, diagnosis of production data su ers from uniqueness and uncertainty. Composition of di erent gas components change with time has been reported in the gas-condensate reservoirs and the shale-gas reservoirs. In this paper we use a compositional model incorporating extended Langmuir isotherm and apparent permeability to study flowing composition transient response. First, a dry gas compositional model is established to model flow of components in the shale-gas reservoirs. Then, fully implicit linearization of the equation system is employed to solve the nonlinear equation system based on unstructured gridding. Numerical simulation shows that adsorption gas content, porosity and permeability a ect the characteristics of flowing composition, composition change and composition derivative. Adsorption gas content determines drop speed of composition, the value of composition change and composition derivative for CH4 component. Permeability a ects composition transient response during early stage. However, during the medium and late stages, di erent permeabilities have the same influence on the composition transient response. The e ects of porosity and adsorption gas content on composition change and composition derivative are similar. However, small difference exists for the e ects of porosity and adsorption gas content on composition change with time at early stage. The findings in this paper would provide a new way to interpret the shale-gas reservoir parameters.
  • Curtis JB. Fractured shale-gas systems. AAPG bulletin, 2002, 86(11): 1921-1938>
    Nelson PH. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG bulletin, 2009, 93(3): 329-340
    张金川,边瑞康,荆铁亚等. 页岩气理论研究的基础意义. 地质通报, 2011, 30(2): 318-323 (Zhang Jinchuan, Bian Ruikang, Jing Tieya, et al. Fundamental significance of gas shale theoretical research. Geological Bulletin of China, 2011, 30(2):318-323 (in Chinese))
    王 南,裴 玲,雷丹凤等. 中国非常规天然气资源分布及开发现状. 油气地质与采收率, 2015, 22(1): 26-31 (Wang Nan,Pei Ling,Lei Danfeng,et al. Analysis of unconventional gas resources distribution and development status in China. Petroleum Geology and Recovery Efficiency, 2015, 22(1): 26-31 (in Chinese))
    董大忠,邹才能,杨桦等. 中国页岩气勘探开发进展与发展前景. 石油学报,2012, 33(s1): 107-114 (Dong Dazhong, Zou Caineng, Yang Hua, et al. Progress and prospects of shale gas exploration and development in China. Acta Petrolei Sinica, 2012, 33(s1): 107-114 (in Chinese))
    邹才能, 朱如凯,吴松涛等. 常规与非常规油气聚集类型, 特征, 机理及展望-以中国致密油和致密气为例. 石油学报, 2012. 33(2): 173-187 (Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, Characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance. Acta Petrolei Sinica, 2012, 33(2): 173-187 (in Chinese))
    Luffel D, Hopkins C, Schettler Jr P. Matrix permeability measurement of gas productive shales. In: SPE Annual Technical Conference and Exhibition. 1993. Society of Petroleum Engineers.
    Passey QR, Bohacs KM, Esch WL, et al. From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale-gas reservoirs. Beijing, China, June, 2010. 8
    Ambrose R, Hartman RC, Akkutlu IY. Multi-component sorbed phase considerations for Shale Gas-in-place Calculations, SPE Production and Operations Symposium, 2011
    Civan F. Effective correlation of apparent gas permeability in tight porous media. Transport in Porous Media, 2010, 82(2): 375-384
    Civan F, Rai CS, Sondergeld CH. Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms. Transp Porous Med, 2011, 86: 925-944
    Civan F, Rai CS, Sondergeld CH. Determining shale permeability to gas by simultaneous analysis of various pressure tests. SPE Journal, 2012, 17(3): 717-726
    Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21
    Darabi H, Ettehad A, Javadpour F, et al. Gas flow in ultra-tight shale strata. J Fluid Mech, 2012, 710: 641-658
    Niu C, Hao YZ, Li DL, et al. 2nd-order gas permeability correlation of shale during slip-flow. SPEJ-168226-PA, 2014, 19(5): 786-792
    Zhang LJ, Li DL, Lu DT, et al. A new formulation of apparent permeability for gas transport in shale. Journal of Natural Gas Science and Engineering, 2015, 23: 221-226
    Brown M, Ozkan E, Raghavan R, et al. Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs. SPE Reservoir Evaluation & Engineering, 2011, 14(6): 663-676
    Guo JJ, Zhang LH, Wang HT, et al. Pressure transient analysis for multi-stage fractured horizontalwells in shale gas reservoirs. Transport Porous Med, 2012, 93: 635-653
    Hasan AA, Anas MA, Wattenbarger RA. Application of linear flow analysis to shale gas wells-field cases. Paper SPE 130370 presented at the SPE Unconventional Gas Conference, Pittsburgh, Pennsylvania, 23-25 February 2010
    Medeiros F, Ozkan E, Kazemi H. A semianalytical approach to model pressure-transients in heterogeneous reservoirs. SPE Reservoir Evaluation & Engineering, 2010, 13 (2): 341-358
    Clarkson C, Nobakht M, Kaviani D, et al. Production analysis of tight-gas and shale-gas reservoirs using the dynamic-slippage concept. SPE Journal, 2012, 17 (1): 230-242
    Moridis GJ, Blasingame TA, Freeman CM. Analysis of mechanisms of flow in fractured tight-gas and shale-gas reservoirs. SPE 139250-MS, 2010
    Li DL, Xu CY, Wang John YL, et al. Effect of Knudsen diffusion and Langmuir adsorption on pressure transient response in shale gas reservoir. J Petrol Science and Engineering, 2014, 124: 146-154
    Freeman C, Moridis G, Blasingame T. A numerical study of microscale flow behavior in tight gas and shale gas reservoir systems. Transport in Porous Media, 2011, 90(1): 253-268
    Cipolla CL, Lolon EP, Erdle JC, et al. Reservoir modeling in shale-gas reservoirs. SPE Res Eval & Eng, 2010, 13 (4): 638-653
    Zhang LJ, Li DL, Li L, et al. Development of a new compositional model with multi-component sorption isotherm and slip flow in tight gas reservoirs. Journal of Natural Gas Science and Engineering, 2014, 21: 1061-1072
    Li DL, Zhang LJ, Lu DT. Effect of distinguishing apparent permeability on flowing gas composition, composition change and composition derivative in tight-and shale-gas reservoir. J Petrol Science and Engineering, 2015, 128: 107-114
    李道伦,查文舒. 数值试井理论与方法. 北京: 石油工业出版社,2013 (Li Daolun, Cha Wenshu. Numerical Well Test Theory and Method. Beijing: Petroleum Industry Press, 2013 (in Chinese))
    Heinemann ZE, Brand CW. Gridding techniques in reservoir simulation. In: Proceedings First and Second International Forum on Reservoir Simulation, Alpbach, Austria, September 12-16, 1988: 339-426
    Cao H. Development of Technique for General Purpose Simulators. [PhD Thesis]. Stanford: Stanford University, 2002
计量
  • 文章访问数:  2338
  • HTML全文浏览量:  116
  • PDF下载量:  1123
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-12
  • 修回日期:  2015-05-18
  • 刊出日期:  2015-11-17

目录

    /

    返回文章
    返回