EI、Scopus 收录
中文核心期刊

海上浮动机场动力学建模及非线性动力响应特性

徐道临, 卢超, 张海成

徐道临, 卢超, 张海成. 海上浮动机场动力学建模及非线性动力响应特性[J]. 力学学报, 2015, 47(2): 289-300. DOI: 10.6052/0459-1879-14-138
引用本文: 徐道临, 卢超, 张海成. 海上浮动机场动力学建模及非线性动力响应特性[J]. 力学学报, 2015, 47(2): 289-300. DOI: 10.6052/0459-1879-14-138
Xu Daolin, Lu Chao, Zhang Haicheng. DYNAMIC MODELING AND NONLINEAR CHARACTERISTICSOF FLOATING AIRPORT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 289-300. DOI: 10.6052/0459-1879-14-138
Citation: Xu Daolin, Lu Chao, Zhang Haicheng. DYNAMIC MODELING AND NONLINEAR CHARACTERISTICSOF FLOATING AIRPORT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 289-300. DOI: 10.6052/0459-1879-14-138
徐道临, 卢超, 张海成. 海上浮动机场动力学建模及非线性动力响应特性[J]. 力学学报, 2015, 47(2): 289-300. CSTR: 32045.14.0459-1879-14-138
引用本文: 徐道临, 卢超, 张海成. 海上浮动机场动力学建模及非线性动力响应特性[J]. 力学学报, 2015, 47(2): 289-300. CSTR: 32045.14.0459-1879-14-138
Xu Daolin, Lu Chao, Zhang Haicheng. DYNAMIC MODELING AND NONLINEAR CHARACTERISTICSOF FLOATING AIRPORT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 289-300. CSTR: 32045.14.0459-1879-14-138
Citation: Xu Daolin, Lu Chao, Zhang Haicheng. DYNAMIC MODELING AND NONLINEAR CHARACTERISTICSOF FLOATING AIRPORT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 289-300. CSTR: 32045.14.0459-1879-14-138

海上浮动机场动力学建模及非线性动力响应特性

基金项目: 973 计划(2013CB036014) 和国家自然科学基金(11472100) 资助项目.
详细信息
    通讯作者:

    徐道临,教授,主要研究方向:非线性动力学.E-mail:dlxu@hnu.edu.cn

  • 中图分类号: O322;O317+2

DYNAMIC MODELING AND NONLINEAR CHARACTERISTICSOF FLOATING AIRPORT

Funds: The project was supported by the 973 Program (2013CB036104) and the National Natural Science Foundation of China (11472100)
  • 摘要: 海上浮动机场由多个浮体模块柔性连接组成, 是一个典型的刚柔流耦合的多振子网络系统. 从网络动力学角度提出一个新的建模方法, 构建了具有链式拓扑结构特征的海上浮动机场非线性力学模型. 数值仿真分析了浮动机场的非线性响应和连接件载荷, 表明线性分析方法可能严重低估了实际情况. 探讨了浮体模块响应的网络协同效应, 以及"振幅死亡" 现象. 初步探讨了振幅死亡与连接件刚度参数和波浪周期的关系, 对海上浮动机场的稳定性设计具有特殊意义. 为研究非线性网络结构动力学问题, 包括大型海上浮体结构, 提供一个新的分析工具和应用范例.
    Abstract: Floating airport consisting of multiple flexibly connected modules is a typical dynamic network with flexiblerigid- fluid coupling. A new method is proposed for modeling and a chain-topological network model for the floating airport is developed. In numerical simulations, the nonlinear responses of surge, heave, pitch motions and loads of connectors are analyzed implying that the classical linearization approach may severely underestimates the actual results. Further, this paper studies synergetic dynamics of the network and amplitude death phenomena. The onset of amplitude death associated with coupling stiffness and wave period are illustrated, which is important for the stability safety design of the floating airport. This work provides a new methodology and an application example in the study for network structural dynamics, including very large scale floating structures.
  • Mcallister KR. Mobile offshore bases——An overview of recent research. Journal of Marine Science and Technology, 1997, 2(3): 173-181
    Ohmatsu S. Overview: Research on wave loading and responses of VLFS. Marine Structures, 2005, 18(2): 149-168
    Wang CM, Tay ZY. Very large floating structures: Applications, research and development. Procedia Engineering, 2011, 14: 62-72
    Fujikubo M. Structural analysis for the design of VLFS. Marine Structures, 2005, 18(2): 201-226
    Yoshida K. Developments and researches on VLFS in Japan. In: Proceedings of the Second International Workshop on Very Large Floating Structures, Hayama, Japan, 1996
    Kyozuka Y, Kato S, Nakagawa H. A numerical study on environmental impact assessment of mega-float of Japan. Marine Structures, 2001, 14(1): 147-161
    Suzuki H. Overview of mega-float: Concept, design criteria, analysis, and design. Marine Structures, 2005, 18(2): 111-132
    Sueoka H, Sato C. Phase H research of mega-float. In: Proceedings of the Tenth International Offshore and Polar Engineering Conference, Seattle, USA, 2000
    Bhattacharya B, Basu R, Ma K. Developing target reliability for novel structures: The case of the mobile offshore base. Marine Structures, 2001, 14(1-2): 37-58
    Remmers G, Zueck R, Palo P, et al. Mobile offshore base. In: Proceedings of the Eighth International Offshore and Polar Engineering Conference, Montreal, Canada, 1998
    Zueck R, Taylor R, Palo P. Assessment of technology for mobile offshore base. In: Proceedings of the Tenth International Offshore and Polar Engineering Conference, Seattle, USA, 2000
    Palo P. Mobile offshore base: Hydrodynamic advancements and remaining challenges. Marine Structures, 2005, 18(2): 133-147
    Girard A, Hedrick KJ, Sousa DBFDTJ. A hierarchical control architecture for mobile offshore bases. Marine Structures, 2000, 13(4): 459-476
    Faltinsen OM. Bottom slamming on a floating airport. In: Proceedings of the Second International Workshop on Very Large Floating Structures, Hayama, Japan, 1996
    Rognaas G, Xu J, Lindseth S, et al. Mobile offshore base concepts: Concrete hull and steel topsides. Marine Structures, 2001, 14(1): 5-23
    Price WG, Inzunza MS, Temarel P. The hydroelastic behaviour of barge type structures in waves. In: Proceedings of the Second International Workshop on Very Large Floating Structures, Hayama, Japan, 1996
    Pinkster JA, Fauzi A. The effect of air cushions under floating offshore structures. In: Proceedings of the Eighth International Conference on the Behaviour of Offshore Structures, Delft, The Netherlands, 1997
    Young T, Chung JH. Introduction of barge-mounted plants project in Korea. In: Proceedings of the Second International Workshop on Very Large Floating Structures, Hayama, Japan, 1996
    Koh HS, Lim YB. The floating platform at the marina bay, Singapore. Structural Engineering International, 2009, 19(1): 33-37
    吴有生, 杜双兴. 极大型海洋浮体结构的流固耦合分析. 舰船科学技术,1995, (1):1-9 (Wu Yousheng, Du Shuangxing. Fluid-structure interaction analysis of very large floating structures. Ship Science and Technology, 1995, (1): 1-9 (in Chinese))
    崔维成, 吴有生, 李润培. 超大型海洋浮式结构物开发过程需要解决的关键技术问题.海洋工程, 2000, 18(3): 1-8 (Cui Weicheng, Wu Yousheng, Li Runpei. Technical problems in the development of very large floating structures.Ocean Engineering, 2000, 18(3): 1-8 (in Chinese))
    崔维成, 吴有生, 李润培. 超大型海洋浮式结构物动力特性研究综述. 船舶力学, 2001, 5(1): 73-81 (Cui Weicheng, Wu Yousheng, Li Runpei. Recent researches on dynamic performances of very large floating structures. Journal of Ship Mechanics, 2001, 5(1): 73-81 (in Chinese))
    陈国建, 杨建民, 张承懿. 箱式超大型浮体的水弹性模型试验. 海洋工程, 2003, 21(3): 1-5 (Chen Guojian, Yang Jianmin, Zhang Chengyi. Experimental research on hydroelasticity on box-typed flexible VLFS in waves. Ocean Engineering, 2003, 21(3): 1-5 (in Chinese))
    韩满生. 超大型浮体结构水弹性响应的板模型分析[硕士论文]. 青岛: 中国海洋大学, 2005 (Han Mansheng. Analysis of hydroelastic responses of very large floating structure by use of plate model. [Master's Thesis]. Qingdao: Ocean University of China, 2005 (in Chinese))
    胡金芝. 超大型浮体结构水弹性响应的梁板模型分析[硕士论文]. 南京: 河海大学, 2007 (Hu Jinzhi. Analysis of hydroelastic responses of very large floating structure by use of sandwich grillage model. [Master's Thesis]. Nanjing: Hohai University, 2007 (in Chinese))
    Bishop RED, Price WG. Hydroelasticity of Ships. Cambridge: Cambridge University Press, 1979
    Kashiwagi M. Research on hydroelastic responses of VLFS: Recent progress and future work. International Journal of Offshore and Polar Engineering, 2000, 10(2): 1053-5381
    Watanabe E, Utsunomiya T, Wang CM. Hydroelastic analysis of pontoon-type VLFS: A literature survey. Engineering Structures, 2004, 26(2): 245-256
    Chen XJ, Wu YS, Cui WC, et al. Review of hydroelasticity theories for global response of marine structures. Ocean Engineering, 2006, 33(3): 439-457
    Wang CM, Takagi K, Utsunomiya T, et al. Literature review of methods for mitigating hydroelastic response of VLFS under wave action. Applied Mechanics Reviews, 2010, 63(3): 30802
    Paulling JR, Tyagi S. Multi-module floating ocean structures. Marine Structures, 1993, 6(2): 187-205
    Gao RP, Wang CM, Koh CG. Reducing hydroelastic response of pontoon-type very large floating structures using flexible connector and gill cells. Engineering Structures, 2013, 52: 372-383
    Gao RP, Tay ZY, Wang CM, et al. Hydroelastic response of very large floating structure with a flexible line connection. Ocean Engineering, 2011, 38(17): 1957-1966
    Fu S, Moan T, Chen X, et al. Hydroelastic analysis of flexible floating interconnected structures. Ocean Engineering, 2007, 34(10): 1516-1531
    Maeda H, Maruyama S, Inoue R, et al. On the motions of a floating structure which consists of two or three blocks with rigid or pin joints. Journal of the Society of Naval Architects of Japan, 1979, 145: 71-78
    Wang D, Ertekin RC, Riggs HR. Three-dimensional hydroelastic response of a very large floating structure. International Journal of Offshore and Polar Engineering, 1991, 1(4): 1053-5381
    Riggs HR, Ertekin RC. Approximate methods for dynamic response of multi-module floating structures. Marine Structures, 1993, 6(2): 117-141
    Xu DL, Zhang HC, Lu C. On study of nonlinear network dynamics of flexibly connected multi-module very large floating structures. The Second International Conference on Vulnerability and Risk Analysis and Management, Liverpool, UK, 13-16, July, 2014
    Xu DL, Zhang HC, Lu C. Analytical criterion for amplitude death in non-autonomous systems with piecewise nonlinear coupling. Physical Review E, 2014, 89: 042906
    Stoker JJ. Water Waves: the Mathematical Theory with Applications. Hoboken: John Wiley & Sons, 1958
    Sannasiraj SA, Sundar V, Sundaravadivelu R. Mooring forces and motion responses of pontoon-type floating breakwaters. Ocean Engineering, 1998, 25(1): 27-48
    Zheng YH, You YG, Shen YM. On the radiation and diffraction of water waves by a rectangular buoy. Ocean Engineering, 2004, 31(7): 1063-1082
    王志军, 李润培, 舒志. 箱式超大型浮体结构在规则波中的水弹性响应研究. 海洋工程, 2001,19(3): 9-13 (Wang Zhijun, Li Runpei, Shu Zhi. Study on hydroelastic response of box-shaped very large floating structure in regular waves. Ocean Engineering, 2001, 19(3): 9-13 (in Chinese))
    Resmi V, Ambika G, Amritkar RE. General mechanism for amplitude death in coupled systems. Physical Review E, 2011, 84(4): 46212
    Rosenblum MG, Pikovsky AS, Kurths J. From phase to lag synchronization in coupled chaotic oscillators. Physical Review Letters, 1997, 78: 4193
    Banerjee T, Biswas D. Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion. Chaos, 2013, 23: 043101
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-20
  • 修回日期:  2014-10-22
  • 刊出日期:  2015-03-17

目录

    /

    返回文章
    返回